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Abstract

Game-based learning (GBL) may address the unique

characteristics of a single subject such as chemistry.

Previous systematic reviews on the effects of GBL have

yielded contradictory results concerning cognitive and

motivational outcomes. This meta-analysis aims to:

(a) estimate the overall effect size of GBL in chemistry

education on cognitive, motivational, and emotional

outcomes compared with non-GBL (i.e., media compar-

ison); (b) examine possible moderators of the effects;

and (c) identify the more effective game design and

instructional design features (i.e., value-added compari-

son). We screened 842 articles and included 34 studies.

This study is the first GBL meta-analysis that employed

a three-level random-effects model for the overall

effects. Moderator analysis used a mixed-effects meta-

regression model. Results from the media comparison

suggest chemistry GBL was more effective for cognition

(g = 0.70, k = 30, N = 4155), retention (g = 0.59,

k = 20, N = 2860), and motivation (g = 0.35, k = 7,

N = 974) than non-GBL and the substantial
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heterogeneity (I2 = 86%) for cognitive outcomes. No

study reported emotional outcomes, and studies consid-

ering value-added comparisons of GBL with versus

without specific design features (k = 3) were too few to

perform a meta-analysis. Moderator analyses implied

that except for publication source and sample size, no

other moderator was related to effect sizes. There may

be the small-study effects, particularly publication bias.

Although we conclude that GBL enhances chemistry

learning more than non-GBL, the results also make

clear that additional high-quality value-added research

is needed to identify design guidelines that may further

improve chemistry GBL. More GBL meta-analyses on

subjects other than chemistry are also needed. As the

first GBL meta-analysis that emphasizes emotion, we

call for more research on emotion and on relationships

between cognition, motivation, and emotion in GBL.
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1 | INTRODUCTION

Every time a new medium emerges, stakeholders expect new opportunities for education
(Kirschner & Hendrick, 2020). This also applies to game-based learning (GBL)—a type of learn-
ing pedagogy with game play, accompanied by learning goals, learning outcomes, game goals,
and game outcomes, in which a game is the medium for learning (Plass et al., 2015). Unlike
simulations such as scientific computer models that represent real-world phenomena, games
are defined by essential features such as play (Clark et al., 2009; Homer et al., 2020; Ke, 2016),
goals (Malone, 1981), rules (Garris et al., 2002), interactivity (Salen & Zimmerman, 2004; Vogel
et al., 2006), challenges (Shute & Ke, 2012), and feedback (Plass et al., 2015; Prensky, 2001), as
displayed in Figure 1. The application of immersive learning technologies such as virtual reality
(VR), augmented reality (AR), or mixed reality (MR) in GBL strengthens this expectation
(Checa & Bustillo, 2019; Cummings & Bailenson, 2016; Di Natale et al., 2020; Garz�on &
Acevedo, 2019; Garz�on et al., 2019; Laffey et al., 2019; Merchant et al., 2014; Moreno &
Mayer, 2002, 2004; Parong & Mayer, 2018, 2021; Pellas et al., 2018). However, what supports
learning, when, and for whom? Game comparison researchers seek to answer two questions:
(1) do students learn better from GBL than non-GBL? (media comparison research;
Mayer, 2020); and (2) which design features improve the effectiveness of GBL? (value-added
research; Mayer, 2020).

The results from 19 systematic reviews (Supplementary material S1) and six meta-analyses
across multiple subjects (Table 1) reveal mixed outcomes: some reviews conclude with caution
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on the effectiveness of GBL and call for more empirical evidence (Boyle et al., 2016; Connolly
et al., 2012; Girard et al., 2013; Martinez-Garza et al., 2013; Mayer, 2019, 2020; National
Research Council, 2011a; Young et al., 2012), whereas previous meta-analyses support its cogni-
tive benefits (Clark et al., 2016; Karakoç et al., 2020; Lamb et al., 2018; Sitzmann, 2011; Vogel
et al., 2006 ; Wouters et al., 2013), particularly retention (Sitzmann, 2011; Wouters et al., 2013),
but not its motivational benefits (Sitzmann, 2011; Vogel et al., 2006; Wouters et al., 2013). This
inconsistency may be due to differences among the empirical studies (NRC, 2011a; Vogel
et al., 2006; Wouters et al., 2013; Young et al., 2012). Most important, the effectiveness of GBL
may depend on the subjects or nature of the content (Acquah & Katz, 2020; Hung et al., 2018;
Rutten et al., 2012; Wouters et al., 2013; Young et al., 2012). That is, GBL should address the
unique characteristics of each subject. In line with discipline-based educational research
(NRC, 2012a; Rahman & Lewis, 2020), meta-analyses examining a particular subject (see
Table 1), such as math (Byun & Joung, 2018; Tokac et al., 2019), second language (e.g., English;
Chen, Tseng, & Hsiao, 2018; Thompson & von Gillern, 2020), and science (Riopel et al., 2020;
Setiawan & Phillipson, 2019; Tsai & Tsai, 2020) will add value to our existing knowledge
about GBL.

Perhaps due to the unique characteristics of physics, chemistry, and biology, this inconsis-
tency is even more obvious in science GBL (Cheng et al., 2015; Klopfer & Thompson, 2020; Li
& Tsai, 2013; Mayer, 2014b, 2020; NRC, 2011a; Riopel et al., 2020; Setiawan & Phillipson, 2019;
Tsai & Tsai, 2020; Wouters et al., 2013; Young et al., 2012). Physics is mainly characterized by
highly abstract and idealized mathematical expressions (Docktor & Mestre, 2014; Duit
et al., 2007; Opfermann et al., 2017), and biology is mainly characterized by multiple and

FIGURE 1 The theoretical framework of game-based learning. Single-headed arrows represent causal

relations; double-headed arrows represent correlation; rectangles represent independent and dependent

variables; all numbers are explained in the text
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TABLE 1 Overview of previous meta-analyses in game-based learning

Study Year range Target Subject Comparison K1 Independent variable Dependent variable K2 ES

Byun and Joung (2018) 2000–2014 K-12 Math Media 17 Digital game-based learning Achievement 25 d = 0.37na

Chen et al. (2020) 2008–2019 K-16 All Value 25 Competition Cognitive outcomes
Non-cognitive
outcomes

25
82

g = 0 .37*
g = 0.40*

M.H. Chen et al. (2018) 2003–2014 All English Media 10 Digital game-based learning Vocabulary acquisition 10 d = 1.03*

Clark et al. (2016) 2000–2012 K-16 All Media value 69 Digital games Cognitive learning
outcomes

Intrapersonal learning
outcomes

173
35

g = 0.35*
g = 0.35*

Enhanced design Learning outcomes 40 g = 0.34*

Karakoç et al. (2020) 2000–2018 K-16 All Media 35 Game-based learning Achievement 38 g = 1.70*

Lamb et al. (2018) 2002–2015 K-14 All Media 28 Serious educational games
Serious games
Simulations

Cognition
Affect
Behavior

na
na
na

d = 0.67na

d = 0.51na

d = 0.04na

Riopel et al. (2020) 2020 All Science Media 79 Serious games incl.
simulations

Declarative knowledge
Retention
Procedural knowledge

65
8
7

d = 0.34*
d = 0.31*
d = 0.41*

Setiawan and
Phillipson (2019)

2010–2017 K-8 Science Media 12 Digital games Cognitive outcomes 12 g = 0.67*

Sitzmann (2011) 1976–2009 >18 years old All Media 65 Computer-based simulation
games

Declarative knowledge
Retention
Procedural knowledge
Self-efficacy

39
8
22
8

d = 0.28na

d = 0.22na

d = 0.37na

d = 0 .52na

Thompson & von
Gillern, 2020)

�2017 K-16 English Media 19 Video game-based learning Vocabulary acquisition 20 d = 0.70na

Tokac et al. (2019) 2000–2012 K-12 Math Media 24 Game-based learning Achievement 39 d = 0.13*

Tsai and Tsai (2020) 2000–2018 K-16 Science Media
Value

26 Digital games incl.
simulations

Knowledge acquisition 14
13

g = 0.65*
g = 0.41*
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TABLE 1 (Continued)

Study Year range Target Subject Comparison K1 Independent variable Dependent variable K2 ES

Vogel et al. (2006) 1986–2003 All All Media 32 Games
Interactive simulations

Cognitive gains
Attitude

na
na

z = 6.05*
z = 13.74*

Wouter & Oostendorp
(2013)

1990–2012 All All Media 39 Serious games Knowledge
Skills
Retention
Motivation

25
52
16
31

d = 0.27*
d = 0.29*
d = 0.36*
d = 0.26

Wouters et al. (2013) 1990–2012 All All Value 29 Instructional support Knowledge
Skill
In-game performance

36
32
38

d = 0.33*
d = 0.62*
d = 0.19*

Notes: ES, effect size; na, not available; K1, Number of primary studies included in the meta-analysis; K2, Number of pairwise comparisons in each category.
*p < .05.
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hierarchical levels of organization in living organisms (NRC, 2009; Tsui & Treagust, 2013;
Wandersee et al., 2000). Although multilevel thinking plays a role in many STEM subjects such
as physics and biology, chemistry is mainly characterized by multilevel thinking (American
Chemical Society, 2018; de Jong & Taber, 2007; Gilbert & Treagust, 2009; NRC, 2009;
NRC, 2012a). The triple nature of chemistry is difficult to learn mostly because students struggle
to coordinate thinking within three unique levels of chemical knowledge: (1) macro—tangible
and visible phenomena, such as chemical reactions; (2) submicro—invisible atoms, ions, mole-
cules, or structures; and (3) symbolic—representational symbols, formulas, or equations (called
Johnstone’s triangle or chemistry triplet; de Jong & Taber, 2007; Gilbert & Treagust, 2009;
Johnstone, 1991, 2000; Sirhan, 2007; Taber, 2009, 2013; Talanquer, 2011; Towns & Kraft, 2011).

To date, the biggest challenge in education such as chemistry is how to create effective, effi-
cient, motivating, and enjoyable learning experiences (Neelen & Kirschner, 2020), particularly
how to increase chemistry literacy, motivate learners to learn chemistry, and/or pursue
chemistry-related advanced degrees and careers (European Commission, 2015;
NRC, 2011a, 2011b, 2012b, 2012c, 2014). Theoretically, this challenge could be addressed by
instructional methods such as GBL (Cooper & Stowe, 2018; Klopfer & Thompson, 2020). First,
interactivity in combination with multiple representations in GBL requires learners to connect
all three levels of chemistry knowledge and switch from one level to another, which may help
overcome learning difficulties in Johnstone’s triangle (de Jong & Taber, 2007). For example, to
figure out how suspects make fake coins, players must watch an animation of zinc, water, and
chloride (submicro), write its chemical equation (symbolic), and conduct a gold rush experi-
ment in virtual labs (macro; Hodges et al., 2018). In this process, GBL can also demonstrate the
chemical phenomena, visualize the underlying submicroscopic processes, and show symbolic
representations. Second, real-time feedback in GBL enables learners to identify chemistry con-
tent that they may be struggling with. Third, as the essential activity of GBL (Sicart, 2014), play
is critical for cognitive and emotional development (Homer et al., 2020). For example, play
allow learners to retain multiple representations of the same subject (Plass et al., 2015), which
may also help multilevel thinking. Fourth, challenges in GBL that are neither too easy nor too
difficult ask players to master certain chemistry content before moving to next level and playing
games (e.g., Sokobond) is usually fun, which may help support a zone of proximal development
(Vygotsky, 1978), motivate, and enjoy learning chemistry (Homer et al., 2020; Malone, 1981).
Fifth, through GBL, learners can enjoy experiences free of real-life constraints and practice
repeatedly. For example, although lab works play a central role in secondary (ACS, 2018) and
higher education (ACS, 2015a, 2015b), sometimes they are rarely implemented due to limited
curriculum time or costly infrastructures such as nuclear magnetic resonance
(NRC, 2011a, 2014). GBL can create virtual laboratories or scenes to conduct scientific inquiry
(e.g., HoloLAB Champions), particularly in dangerous experiments and environments that are
physically inaccessible (Parker et al., 2008), which may help develop chemical practices
(NRC, 2011a, 2012b). Thus, GBL has great potential to boost chemistry education.

Empirically, little attention has been paid to chemistry (Cheng et al., 2015)—the central sci-
ence that connects physics and biology (Brown et al., 2018). In previous systematic reviews,
most primary research in science GBL was conducted in physics or biology (Cheng et al., 2015;
Li & Tsai, 2013), with only five studies in chemistry. This may be due to limitations such as
examining media comparison research without value-added research (e.g., Riopel et al., 2020;
Setiawan & Phillipson, 2019), a single learning outcome (e.g., achievement; Riopel et al., 2020;
Setiawan & Phillipson, 2019; Tsai & Tsai, 2020; Young et al., 2012), a narrow publication source
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(e.g., peer-reviewed articles; Setiawan & Phillipson, 2019), and/or narrow range of grades
(e.g., K-8; Setiawan & Phillipson, 2019; K-12, Young et al., 2012).

Although GBL has been emerging in chemistry education over the past 20 years, little is
known about its effectiveness. Therefore, systematic knowledge is needed about whether GBL
makes a difference in chemistry education and how to support GBL chemistry (Bellou
et al., 2018). Hence, this meta-analysis investigates the effects of GBL (media comparison) and
game and instructional design features (value-added comparison) on chemistry learning; that
is, to estimate the effect size, indicate whether the effect size is consistent across empirical stud-
ies, and/or to identify more sources of diversity (Borenstein et al., 2009). To include exhaustive
studies, we broadened the learning outcomes, age groups, and publication sources.

1.1 | Learning outcomes in chemistry game-based learning

Chemistry learning involves not only scientific practices (e.g., ask questions; develop and use
models; plan and carry out investigations), crosscutting concepts that bridge across other disci-
plines (e.g., patterns; cause and effect; scale, proportion, and quantity), and chemistry core ideas
(e.g., matter and its interactions; energy) but also motivation (e.g., attitude; interest) and feel-
ings toward chemistry (e.g., emotions; ACS, 2018; European Commission, 2015; Forsthuber
et al., 2011; NRC, 2012a, 2012b, 2014, 2016; Schola Europaea, 2019). Theoretically, GBL can
impact chemistry learning by affecting cognitive processes, motivation to learn, and/or emotion
(NRC, 2011a; Plass et al., 2015; Plass et al., 2020). Design features of GBL match multiple theo-
ries of learning (cognitive, motivational, and emotional) to a larger extent than other media or
methods (e.g., studying a web lecture). We developed the general theoretical framework of GBL
(see Figure 1). Features of GBL include instructional design features (e.g., teacher support, task
design, and peer interactions) and game design features (e.g., the design of the interface, num-
ber of sessions, and challenges) which are further divided into essential game design features
(e.g., rules) and nonessential game design features (e.g., narratives). To solve the aforemen-
tioned challenges regarding low motivation to learn chemistry, we focus on motivation to learn
a subject (e.g., chemistry) instead of motivation to play the game.

1.1.1 | Cognition in chemistry game-based learning

From the cognitive perspective, the goal of chemistry education involves scientific practices
related to chemistry core ideas and crosscutting concepts (ACS, 2018; NRC, 2012a, 2012b, 2014;
Schola Europaea, 2019). Generally, GBL may affect cognitive processes underlying learning
chemistry such as schema construction and schema automation, which is grounded in learning
theories such as cognitive load theory (CTL; Sweller et al., 1998, 2019), cognitive theory of mul-
timedia learning (CTML; Mayer, 2014a, 2014b, 2020), and the four-component instructional
design model (4C/ID model; van Merriënboer & Kirschner, 2018), as displayed in Figure 1
line 1. According to CTML, meaningful GBL happens when players learn by active processing,
namely selecting relevant information in the game, mentally organizing it as visual and verbal
representations into a coherent structure, and integrating these representations with prior
knowledge (schema construction; Moreno & Mayer, 2007). Take the previous gold rush game
for example. GBL can provide multiple representations: Learners learn different representa-
tions, mentally relate representations to one another, and integrate them into coherent mental
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models (multimedia principle; Mayer, 2014a), which may foster the aforementioned multilevel
thinking (Chiu & Wu, 2009; Wu & Shah, 2004). According to the DeFT framework
(Ainsworth, 2006), multilevel thinking requires not only multiple representations but also dynamic
linking between these representations (multiple representation principle; Ainsworth, 2014), which
can be facilitated by interactivity in GBL. Furthermore, learning chemistry such as multilevel think-
ing may pose considerable cognitive demands on learners and GBL may affect three demands:
essential processing aiming at mentally representing the essential material, generative processing
aiming at making sense of materials, and extraneous processing that does not contribute to learning
Mayer, 2014b, 2020). For example, in HoloLAB Champions, narrative by the virtual host provides a
relevant and meaningful context for scientific practices (situational learning; Plass et al., 2015;
Prensky, 2001), which may facilitate essential processing; Game interactivity allows learners to learn
chemistry lab skills by doing, which may facilitate generative processing (e.g., Moreno &
Mayer, 2005); and Ongoing feedback assesses learners’ performance and directs their attention to
relevant information, which may reduce extraneous processing (Johnson et al., 2017). Given that
players’ cognitive capacity is limited, complex GBL, particularly when multiple representations are
involved, is demanding. Thus, game design and instructional design aim to optimize cognitive pro-
cesses and outcomes via managing essential processing (e.g., reduce game complexity by pre-
training), minimizing extraneous processing (e.g., remove seductive details), and fostering generative
processing (e.g., scaffolding; Mayer, 2014b, 2020), which is the focus of value-added research.

1.1.2 | Motivation in chemistry game-based learning

From the motivational perspective, the goal of chemistry education is to increase motivation to
learn, complete degrees, or pursue careers in chemistry (ACS, 2018; European Commission, 2015;
NRC, 2012a, 2012b, 2014; Schola Europaea, 2019). Generally, GBL may affect players’ values, needs,
beliefs, attributions, and goals of learning chemistry (for an overview and comparison, see Cook &
Artino, 2016; de Brabander & Martens, 2014; Mayer, 2014b, 2020; Plass et al., 2015), which is
grounded in motivation theories such as self-determination theory (Deci & Ryan, 2000),
expectancy-value theory (Wigfield & Eccles, 2000), achievement goal theory (Elliot et al., 2011), self-
efficacy (Bandura, 1986), attribution theory (Weiner, 1985), the theory of planned behavior
(Ajzen, 1991), flow theory (Csikszentmihalyi, 1975, 1990), presence (Cummings & Bailenson, 2016;
Lee, 2004), and interest theory (Hidi & Renninger, 2006; Schiefele, 2009), as displayed in Figure 1
line 2. For example, according to the player experience of the need satisfaction model, features of
GBL environments such as HoloLAB Champions can support basic psychological needs for auton-
omy (e.g., choices regarding the level of challenge, strategies, or tools), competence (e.g., experience
growth and leveling up by optimal challenge), and relatedness (e.g., opportunities to contribute,
communicate, and cooperate with the virtual host), resulting in intrinsic motivation and cognition
(Ryan & Rigby, 2020). Thus, game design and instructional design also aim to increase motivation
to learn (Plass et al., 2020), such as using an incentive system and motivating music in HoloLAB
Champions.

1.1.3 | Emotion in chemistry game-based learning

Emotions are also involved in chemistry learning (Jaber & Hammer, 2016; King et al., 2017;
Maria et al., 2003; NRC, 2012a; Raker et al., 2019; Sinatra et al., 2014). Generally, GBL can
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induce different types of emotions in chemistry learning (e.g., achievement emotions, epistemic
emotions, and topic emotions) by shaping their antecedents (e.g., perceived control and per-
ceived value of the learning tasks, cognitive incongruity; for details, see Loderer et al., 2020;
Plass et al., 2019). These assumptions are grounded in emotion theories such as the control-
value theory of achievement emotions (CVT; Pekrun & Perry, 2014), integrated cognitive-
affective model of media (ICALM; Plass & Kaplan, 2015), and the integrative model of emotions
in game-based learning (EoGBL; Loderer et al., 2020), as displayed in Figure 1 line 3. For exam-
ple, according to CVT, the optimal level of challenges and scaffolding in HoloLAB Champions
may promote a higher perceived control and value of learning chemistry, and, consequently,
induce more positive achievement emotions (e.g., enjoyment) and less negative achievement
emotions (e.g., boredom). Thus, game design and instructional design, particularly emotional
design, aim to trigger more positive emotions and less negative emotions (Loderer et al., 2020;
Plass et al., 2015, 2019), such as using happy expression, warm color, and round shape rather
than sad and neutral expression, cold color, and square shape (Park et al., 2015; Plass
et al., 2014, 2015, 2019; Plass & Kaplan, 2015; Um et al., 2012).

Furthermore, chemistry game designers and researchers must consider which design fea-
tures facilitate cognitive process, motivation, and emotions in players (Figure 1 lines 4, 5, and 6)
because they may influence each other (e.g., Pekrun & Linnenbrink-Garcia, 2014; Robbins
et al., 2004; Talsma et al., 2018; Valentine et al., 2004). Such influence may apply to chemistry
GBL contexts. First, past performance in GBL (e.g., success or failure) may be the sources of
motivation (e.g., self-efficacy; Bandura, 1986) and (achievement) emotions (e.g., enjoyment;
Pekrun & Perry, 2014). For example, a successful performance on one chemistry game level is
likely to promote higher motivation and more positive emotions on the following level. Second,
GBL motivates players to invest sustained effort and time to engage in selecting, organizing,
and integrating information, improving learning and emotion (Mayer, 2014b, 2019). For exam-
ple, a higher motivation on a chemistry game is likely to promote higher performance and more
positive emotions. Third, positive emotions in GBL induce intrinsic motivation to invest effort
(Loderer et al., 2018), reduce cognitive load (Plass & Kaplan, 2015), sustain attention on rele-
vant information (Park et al., 2015), lead to flexible and creative learning strategies (Fiedler &
Beier, 2014), facilitate self-regulated learning (Artino & Jones, 2012; Pekrun & Perry, 2014),
and, consequently, increase performance (Loderer et al., 2020; Sabourin & Lester, 2014). For
example, more positive emotions on a chemistry game are likely to promote higher motivation
and performance. Unfortunately, data from included studies in this meta-analysis do not allow
us to formulate a research question on relations between cognition, motivation, and emotion in
chemistry GBL. Further research on chemistry GBL is needed to confirm this assumption.

1.2 | The present study

Although GBL and chemistry education align, overview research regarding the learning effects
and the determining factors is limited. Despite focusing on chemistry education, this meta-
analysis builds on and considers some limitations from previous meta-analyses. First, we focus
on unresolved issues: whether GBL is more motivating (Sitzmann, 2011; Vogel et al., 2006;
Wouters et al., 2013) than non-GBL (i.e., any type of learning activities without using games,
such as learning with lectures) and which design features enhance GBL (Chen et al., 2020;
Clark et al., 2016; Tsai & Tsai, 2020; Wouters & van Oostendorp, 2013). Second, to avoid deviat-
ing definitions of key concepts including cognitive gains (Vogel et al., 2006), motivation (Clark
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et al., 2016; Lamb et al., 2018), or simulation games (Riopel et al., 2020; Setiawan &
Phillipson, 2019; Sitzmann, 2011), we define GBL narrowly by the aforementioned essential
game design features such as play (i.e., exclude pure simulations) and classify learning out-
comes into cognitive, motivational, and emotional outcomes. Third, as learning content varies,
game genres vary and, consequently, game effectiveness may also vary (Wouters et al., 2013).
Given that game genre is critical in game design and depends on to-be-learned knowledge, we
examine it and follow Chen et al. (2020) and Ke’s (2016) classification of game genre such as
role-playing (see Table 2). Fourth, some studies only included attitude (Vogel et al., 2006), self-
efficacy (Sitzmann, 2011), interest, and engagement (Wouters et al., 2013) as motivational out-
comes, whereas we include other motivation theories, such as expectancy-value theory and
achievement goal theory. Fifth, the standard (two-level) meta-analytic model used by previous
meta-analyses did not consider dependency of effect sizes within studies (e.g., one study reported
multiple comparisons, or multiple measurements for the same outcome; Cheung, 2014, 2019;
L�opez-L�opez et al., 2018). Instead, we use a three-level meta-analytic model to estimate between-
and within-study variance. Sixth, although publication bias (i.e., studies with statistically signifi-
cant or positive results tend to be published more often than those with not statistically significant
or negative results; Rosenthal, 1979) is one of the biggest issues in meta-analyses (Fern�andez-
Castilla et al., 2021), some studies missed many commonly used methods when detecting and cor-
recting publication bias (e.g., Riopel et al., 2020; Sitzmann, 2011), such as the Egger test which
has been shown a better correction for publication bias than other methods (Stanley &
Doucouliagos, 2014; for detailed comparison of methods, see Fern�andez-Castilla et al., 2021;
Kromrey & Rendina-Gobioff, 2006). Progress in statistical analysis techniques enables us to use
more recent and reliable meta-analysis methods, such as meta-regression to detect publication
bias and investigate continuous moderators such as sample size.

This meta-analysis systematically synthesizes all experimental studies that applied GBL in
K-16 chemistry education by addressing the following questions:

RQ1. Is the effect of chemistry GBL on cognitive (including retention), motiva-
tional, and emotional outcomes larger than for non-GBL (media comparison)?

For cognitive outcomes, GBL changes academic knowledge, which is often measured by imme-
diate and/or delayed tests (Mayer, 2020). As learning and instruction seek to promote the storage of
learned knowledge in long-term memory that can be retrieved when needed (Bennett &
Rebello, 2012; Paas & Sweller, 2014), delayed tests are advocated to determine the long-lasting
impact of GBL (i.e., long-term retention) instead of fleeting knowledge improvement due to arousal
(Mayer, 2014b). Furthermore, retention is a key learning outcome in chemistry education
(NRC, 2012a, 2014, 2015). For motivational outcomes, that GBL are motivating is the most frequent
appeal of GBL (Malone, 1981; Plass et al., 2015; Wouters et al., 2013). For emotional outcomes,
decreasing boredom and increasing enjoyment is another appeal of GBL (Loderer et al., 2020). Pre-
vious meta-analyses generally found small to large effect sizes for the different cognitive outcomes
(Karakoç et al., 2020; Lamb et al., 2018; Riopel et al., 2020; Setiawan & Phillipson, 2019;
Sitzmann, 2011; Tsai & Tsai, 2020; Wouters et al., 2013) and retention (Riopel et al., 2020;
Sitzmann, 2011; Wouters et al., 2013) in favor of GBL relative to non-GBL but disagree about the
effects on motivational outcomes (Sitzmann, 2011; Vogel et al., 2006; Wouters et al., 2013), and little
is known about emotional outcomes (see Table 1). Fortunately, a meta-analysis on emotions in
technology-based learning concludes enjoyment and curiosity are positively related to achievement
in GBL (Loderer et al., 2018). Based on this evidence, we hypothesize the following:
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Hypothesis 1. Chemistry GBL yields higher cognitive outcomes than non-GBL.

Hypothesis 2. Chemistry GBL yields higher retention than non-GBL.

TABLE 2 Coding for basic information, learning outcomes, and moderator variables

Variables Categories

Basic information Author, publication year, grade, country, comparison, game name,
chemistry topic, and assessment method

Game genre 1. Puzzle game with logic thinking, pattern recognition, objects matching,
or questions answering (e.g., trivia)

2. Action game with combat and physical challenges such as shooting
3. Adventure game with exploring, gathering items, and solving puzzles

driven by story
4. Strategy game with system thinking and via a decision tree
5. Role-playing game when players assume the roles of characters
6. Simulation game which simulates reality

Learning outcomes 1. Cognition incl. factual, conceptual, procedural, and/or strategic
knowledge

2. Retention when cognition was measured in a delayed test
3. Motivation in chemistry incl. learning attitude, interest, intrinsic

motivation, self-determination, achievement goal, task value, flow,
presence, and/or self-efficacy

4. Emotion incl. enjoyment, pride, hope, anxiety, anger, shame, boredom,
or hopeles

level of control group 1. Active incl. doing experiments, computer-based tutorials, assignments,
or exercises

2. Passive incl. reading textbooks, listening to lectures, or watching videos

Additional instruction 1. The game with additional instructions * (e.g., pretraining before GBL,
debriefing after GBL)

2. The game without additional instructions (i.e., GBL is standalone)

User grouping 1. Single: play the game individually
2. Multiple: play the game in groups

No. of game sessions 1. Single: play the game once
2. Multiple: play the game repeatedly

Sample size The actual number of participants

Publication source 1. Gray literature incl. theses or conference proceedings
2. Published incl. books or peer-reviewed journals

Randomization 1. Random controlled trial: randomly assign the participants (not the
class) to groups

2. Quasi-experiment design: no random assignment

Assessment type 1. Closed incl. only multiple-choice questions
2. Non-closed incl. short-answer questions or open-ended questions with

or without multiple-choice questions
3. Mix incl. closed questions together with non-closed questions

Notes: For example, if a lecture is given before GBL, it counts as additional instruction (e.g., pretraining); if it is given without
GBL, it counts as non-GBL. na, unknown was coded when relevant information is missing.
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Hypothesis 3. Chemistry GBL yields higher motivational outcomes than non-GBL.

Hypothesis 4. Chemistry GBL induces more positive emotions and less negative
emotions than non-GBL.

RQ2. Do instruction characteristics (activity level of control group, additional
instruction, user grouping, and number of game sessions) and methodology
characteristics (randomization, sample size, publication source, and assessment
type) moderate the effect?

We identified the following instruction characteristics as moderators based on the aforemen-
tioned cognitive foundations of GBL and inconclusive results from previous meta-analyses in GBL
(see Table 2). First, activity level of control group. According to CTML (Mayer, 2014a, 2014b, 2020)
and CTL (Sweller et al., 2019), GBL fosters generative processing in which learners actively engage
in selecting, organizing, and integrating new information, but this is also true for non-GBL. Active
processing is key to learning; the deeper the processing of information, the more that will be
retained and encoded into memory (Craik & Lockhart, 1972); thus, the difference between GBL
and non-GBL may decline when non-GBL uses active instead of passive instruction. Second, addi-
tional instructions (i.e., instructions that are used together with GBL rather than non-GBL, such as
pretraining before GBL). Organizing and integrating information is critical for learning, but these
do not occur automatically (Mayer, 2014a, 2014b). Integrating GBL with non-game instructions
(e.g., pretraining;Clark et al., 2016 ; Wouters et al., 2013) may facilitate articulating and integrating
new knowledge with prior knowledge, leading to higher recall, transfer, and retention than
standalone GBL (Merrill, 2012; Wouters et al., 2008; Wouters et al., 2013; Young et al., 2012).
Third, user grouping. Playing games in groups and explaining things to each other may also facili-
tate knowledge articulation and, thus, the organization and integration of new information. This
point is supported by the collaboration principle in multimedia learning, also known as the collec-
tive working memory effect (Kirschner et al., 2009, 2011), which states it is better to assign com-
plex learning tasks in groups (van Merriënboer & Kester, 2014). Fourth, number of game sessions.
GBL can be complex for novices. When they start playing a game, they must learn technological
knowledge—game information (extraneous processing because it does not contribute to learning)
and content knowledge (essential and generative processing); thus, they may easily become over-
whelmed. Multiple game sessions allow the players to get familiar with the game.

Theoretically, the efficacy of GBL relative to non-GBL may improve in specific learning
arrangements—such as additional instruction, group gameplay, multiple sessions, or passive
instruction in non-GBL—that facilitate information processing. Empirically, previous meta-
analyses only agree on the role of number of game sessions; that is, compared with non-GBL,
learners benefited more when GBL involved multiple sessions, and no difference was found
between single sessions and non-GBL (Clark et al., 2016; Wouters et al., 2013). However, the
meta-studies are unsure regarding additional instruction (Clark et al., 2016; Sitzmann, 2011;
Wouters et al., 2013), user grouping (Tsai & Tsai, 2020; Vogel et al., 2006; Wouters et al., 2013),
and activity level of control group (Riopel et al., 2020; Sitzmann, 2011; Wouters et al., 2013).
Therefore, we only formulated a hypothesis regarding the number of game sessions. For other
variables, we investigated whether and to what extent they moderate the overall effect.

Hypothesis 5. Relative to non-GBL, chemistry GBL with multiple game sessions
yield higher learning outcomes than those with single sessions.
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To check study quality, we included the following methodology characteristics as modera-
tors: randomization, sample size, publication source, and assessment type (see Table 2). Ideally,
large sample sizes and randomized controlled trials (RCTs) are recommended by review organi-
zations, such as What Works Clearinghouse (WWC, 2019). Practically, effect sizes were found
to be systematically higher in quasi-experiments designs (QEDs) than in RCTs, in smaller than
larger studies, and in published studies than gray literature due to methodological weaknesses
and small-study effects (Cheung & Slavin, 2016; Slavin, 2008; Slavin & Smith, 2009). Although
closed assessment (e.g., multiple-choice questions) is easier to implement than non-closed
assessment (e.g., open-ended questions), effect sizes seem larger when using non-closed assess-
ment (Tsai & Tsai, 2018). Again, previous GBL meta-analyses provide inconclusive results on
the moderating effects of these methodology characteristics (Karakoç et al., 2020; Riopel
et al., 2020; Sitzmann, 2011; Tsai & Tsai, 2018; Wouters et al., 2013). Therefore, it is valuable to
check publication bias. We further evaluate the extent of bias, estimate unbiased effects, and
suggest improvements for future research; simply excluding unpublished studies would ignore
publication bias and overestimate the overall effects.

RQ3. Which game design or instructional design features improve chemistry GBL
(value-added comparison)?

As displayed in Table 3, value-added research pinpoints design features that promote GBL by
reducing extraneous processing (e.g., redundancy), managing essential processing (e.g., modality),
and/or fostering generative processing (e.g., personalization; Mayer, 2020). Previous meta-
analyses have suggested that some instructional design features such as modality, personalization,
feedback (Tsai & Tsai, 2020; Wouters & van Oostendorp, 2013), competition (Chen et al., 2020),
and/or enhanced scaffolding (e.g., personalized scaffolding based on individual learner needs;
Clark et al., 2016) enhance GBL. However, other features remain unsettled, including game
design features such as narrative (integrate a storyline; Wouters & van Oostendorp, 2017) or
immersion (use VR), and instructional design features such as collaboration (play in groups;
Clark et al., 2016), learner control (allow learners to choose game levels), or segmenting (break
the materials into parts; Mayer, 2020). Given the limited research evidence, we do not formulate
a hypothesis but explore the efficacy of these features in chemistry GBL.

TABLE 3 Features that promote GBL

Features Descriptions Cognitive processing

Pretraining Provide trainings on key concepts and characteristics before
gameplay

Essential processing

Modality Present words in spoken rather than written forms

Personalization Use conversational rather than formal styles Generative processing

Feedback Add explanations and advice to corrective feedback

Self-explanation Provide prompts to self-explain the performance during
gameplay

Competition Play the game against virtual components, time, or other
players

Redundancy Eliminate redundant information, such as written text from
spoken texts or pictures

Extraneous processing

HU ET AL. 13|



2 | METHOD

2.1 | Literature search

The PRISMA flow diagram (Moher et al., 2009) in Figure 2 summarizes the process of the liter-
ature search and selection. The search comprised three parts. First, searching databases: Web of
Science, Scopus, Eric, and PsycINFO. The search terms were combined in English: “(chemistry
or chemical) AND (game or immersive learning or virtual reality or virtual environment or
augmented reality or augmenting reality or mixed reality) AND (learning or cognit* or achieve-
ment or interest or attitude or engage* or motivation* or involvement or enjoy* or emotion* or
affective)”, which should be in the title, abstract, or the list of keywords. In case the term
“game” was not in the title, abstract, or keywords, we included immersive learning technologies
commonly used in games as the search terms, such as VR. The period searched was from
2000, when GBL studies changed dramatically after that due to technological development
(Parker et al., 2008) and GBL started becoming popular in chemistry, to January 2020. Second,
a Google Scholar search for gray literature (Haddaway et al., 2015). Finally, a snowball search
in the reference lists and citations of the aforementioned meta-analyses and systematic reviews.
Overall, 1156 records came out, and 842 remained after removing duplicates.

2.2 | Inclusion and exclusion criteria

Studies were evaluated based on (a) language, (b) subject, (c) participants, (d) accessibility,
(e) comparison, (f) independent variable, (g) dependent variable, (h) data, and (i) others

FIGURE 2 PRISMA flow diagram of literature search and records selection process
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(Table 4). Study inclusion followed two stages (Figure 2). First, in the screening stage, all the
titles and abstracts were screened based on a, b, f, and h, which led to 319 records being
included and 523 excluded. If the study did not state whether it fulfilled these four criteria, the
researchers included it and made a further decision based on its full text in the next stage. To
assess the inter-rater reliability (IRR), 91 records (>10% of 842) were randomly chosen and
screened independently by the first two authors, with Cohen’s k = 0.83. Any disagreements
were resolved by discussing and consulting with the third author. Second, the full texts of
319 records were retrieved and evaluated using all nine criteria. The first two authors randomly
selected 34 full texts (>10% of 319) and assessed them independently. Despite two disagree-
ments regarding the reason for exclusion, a perfect IRR was reached (Cohen’s k = 1). In total,
we included 34 articles.

2.3 | Coding

To conduct a quantitative analysis and provide a qualitative description of all the included stud-
ies, we collected the following data: basic information, game genre, learning outcomes, and
moderator variables (Table 2). The coding process was performed in a standardized way. First,
a trial coding with five studies was run to evaluate whether all possible situations for a modera-
tor variable were covered by a category. Then, a random sample of four studies (>10% of 34)
was coded independently by the first two authors. A satisfactory IRR with Cohen’s k = 1 was
reached for all variables, except for number of game sessions (Cohen’s k = 0.5). Any disagree-
ments were discussed until agreement was reached. For this variable, another four articles were

TABLE 4 Inclusion and exclusion criteria

Criteria Inclusion Exclusion

(a). Language English Language other than English

(b). Subject Chemistry Integrated science

(c). Participants Nondisabled K-16 students Preservice teachers, student teachers, or
employees

(d). Accessibility The full text of the study is
accessible

No access via on Internet or contacting
authors

(e). Comparison Game vs. nongame or game with
vs. without specific features

No control group, control group without
learning the same subject matter

(f). Independent variable Game-based learning or serious
games with the term “game”
appearing in the article

Games for entertainment, or educational
applications, technologies, or tools
(e.g., VR, AR, MR) without using the
term “game”

(g). Dependent variable Cognitive, motivational, or
emotional outcome

Introduction, assessment, motivation, or
perception of the game

(h). Data Sufficient data to calculate effect
size

Case study, no empirical data, or enough
data

(i). Others The study published in conferences or
theses was updated and later published
in journals
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randomly chosen and coded by the first two authors with IRR of Cohen’s k = 1. Finally, the
first author coded the remaining studies. A detailed coding for moderators is available in
Table S1.

2.4 | Calculating effect sizes

Standardized mean difference (mean difference between experiment groups and control groups
divided by the pooled standard deviation) was adopted as effect size (Borenstein et al., 2009),
and g (Hedges, 1981) was calculated using Comprehensive Meta-Analysis (CMA v3; Borenstein
et al., 2013). The effect size for each study was computed in a hierarchical order: the first is raw
data (mean and standard deviation) and the second is data from inferential statistics (e.g., t or
F value; Wouters et al., 2013).

The following complex cases were evaluated cautiously. First, when studies used a pretest–
posttest control group design (k = 23), the preexisting difference between the experimental and
control groups should be considered, and thus, the effect size was estimated on both pretest and
posttest data (Morris, 2008). In practice, effect sizes were computed by post-pre mean difference
of experimental group minus post-pre mean difference of control group divided by the pooled
standard deviation of post-scores. In addition, when different sample sizes in the pretest and
posttest were reported, the smaller sample size was adopted (da Silva Júnior et al., 2018).

Second, when studies used multiple experimental or control groups (k = 5), the rec-
ommended solution was to form multiple pairwise comparisons and calculate multiple effect
sizes (e.g., GBL vs. concept mapping and GBL vs. conventional lecture; Okonkwo, 2012).

Third, when studies recorded multiple measurements of the same outcome (k = 8), multiple
effect sizes were calculated, as suggested by Cheung (2014, 2019) and L�opez-L�opez et al. (2018)).
For instance, knowledge comprehension and knowledge application that were assessed sepa-
rately were calculated separately as the indicator for cognitive outcomes (e.g., Chen et al., 2014;
Chen & Liao, 2015). Intrinsic motivation, self-determination, self-efficacy, grade motivation,
and career motivation were calculated separately as the indicator for motivation in chemistry
(e.g., Meesuk & Srisawasdi, 2014; Srisawasdi & Panjaburee, 2019).

Another special case was Johnson-Glenberg et al. (2014) using the AB-BA design: Two
groups were given GBL intervention (A) and regular instruction (B) in different sequences.
Group 1 received pretest, SMALLab GBL intervention, mid-test, regular instruction, and post-
test, while group 2 received regular instruction first after pretest and SMALLab GBL interven-
tion after mid-test. When the mid-test was conducted, groups 1 and 2 had only received GBL
intervention (SMALLab) and regular instruction, respectively. Therefore, the treatment before
the mid-test was considered as a single-pair comparison (group 1 as GBL group and group 2 as
control group) and the mid-test instead of the “posttest” at the end of the study was taken as
the posttest.

2.5 | Data analysis

All statistical analyses were run via the “metafor” package (version 3.1.8; Viechtbauer, 2010) in
R (version 4.1.0), except the distribution of variance across levels that was run via the “dmetar”
package (Harrer et al., 2019). Because some studies reported multiple measures of the same
construct (e.g., cognition was measured by knowledge comprehension and knowledge
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application) or multiple comparisons (e.g., two GBL groups vs. one non-GBL group), multiple
effect sizes could arise per study and these effect sizes are dependent within studies. Separate
meta-analyses were performed for cognition, retention, and motivation using the random-
effects three-level meta-analytic model (Cheung, 2014, 2019; L�opez-L�opez et al., 2018). The
three-level meta-analytic model includes sampling variance (level 1), within-study variance
(level 2), and between-study variance (level 3). Heterogeneity was assessed using Cochran’s
Q test, and I2 and τ2 statistics. We used the Knapp and Hartung adjustment (Knapp &
Hartung, 2003) to control the Type I error rate (Viechtbauer et al., 2015) and the restricted max-
imum likelihood method (L�opez-L�opez et al., 2014).

Following previous meta-analyses, the interpretation of the magnitude of the overall effect
size was based on the benchmark identified by Cohen (1988): 0.2 = small, 0.5 = medium, and
0.8 = large, although his standard has some limitations such as not considering methodological
features (Cheung & Slavin, 2016; Lipsey et al., 2012). Considering these limitations of
Cohen’s (1988) criteria, the magnitude of effect size of individual studies was also evaluated
based on the benchmarks identified by Cheung and Slavin (2016): 0.30 = average for studies
with small sample size (<250) and 0.16 = average for studies with large sample size (≥250).

Sensitivity analysis was conducted by checking whether the study’s confidence interval
overlaps with that of the pooled effect size and calculating standard deviations (z ≤ �3 or
z ≥ 3.0 are outliers). Publication bias was visualized by plotting the observed standardized mean
differences against their standard errors and tested by funnel plot test (using sample size as a
predictor of effect sizes; Macaskill et al., 2001), Begg’s rank correlation test (using variance and
sample size as a predictor of effect sizes; Begg & Mazumdar, 1994), trim-and-fill method (using
L0

+ as the number of unavailable effect sizes due to publication bias; Duval &
Tweedie, 2000a, 2000b), and an adapted version of Egger’s regression test (using sampling vari-
ance as a predictor of effect sizes; de Jong et al., 2021; Egger et al., 1997; Fern�andez-Castilla
et al., 2021; Knapp et al., 2017; Sterne et al., 2011; Viechtbauer, 2017). The existence of publica-
tion bias is indicated by a statistically significant test and L0

+ > 3 (see Fern�andez-Castilla
et al., 2021). The adapted version of Egger’s regression test models a quadratic relationship
between the standard errors and the standardized mean differences and the intercept of this
model is the overall effect size free of publication bias (see Stanley & Doucouliagos, 2014).

Following de Jong et al. (2021) and Knapp et al. (2017), a three-level mixed-effects model
was run for moderator analysis. Two groups of moderators were analyzed to decrease the risk
of making a Type I error or Type II error caused by testing moderators individually or simulta-
neously (Jansen et al., 2019; van Alten et al., 2019). Due to missing values, the activity level of
control group, additional instruction, and assessment type were omitted from group analysis
and analyzed individually.

3 | RESULTS

3.1 | Descriptive findings

This meta-analysis included 34 studies published from 2006 to 2020. Their characteristics are in
Table 5. The sample sizes ranged from 40 to 470. Thirty studies used media comparisons, while
only three made value-added comparisons. For learning outcomes, no study reported emotions,
nine reported motivation, 33 reported cognition, and six reported both cognition and motiva-
tion, but only three reported both an immediate test and a delayed test (retention). For
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educational level, all studies were implemented in secondary schools (k = 21) and universities
(k = 13). Regarding country, one third was conducted in the United States (k = 11) and one in
eight in China (k = 4). For chemistry content, the most common topics were nomenclature
(k = 8), periodic table (k = 4), and organic chemistry (k = 4). Regarding assessment methods,
tests and questionnaires were the most frequent measures for cognition and motivation; only
five studies adopted mixed-method research (e.g., tests combined with interviews), among
which one retrieved log data. Regarding game genre, the most used genres were puzzle
(k = 12), simulation (k = 7), and role-playing games (k = 6). A detailed example of GBL activi-
ties for each game genre is available in Table S2.

3.2 | Research question 1: Media comparison

3.2.1 | Sensitivity analysis

One comparison by Okonkwo (2012)—GBL vs. conventional lecture—is an outlier based on its
extremely large effect size (g = 5.34 and g = 3.13 for cognition and motivation) and 3 standard
deviations larger than the mean (z = 5.5 for cognition and z = 3.9 for motivation). Furthermore,
its 95% CI does not overlap with that of the summary effect. Thus, the study was excepted for
further analysis.

3.2.2 | Distribution of effect sizes

Effect sizes of cognition and motivation for the individual studies and their distribution are pres-
ented in forest plots (Figures 3 and 4). No results were found for emotion. As displayed in Table 6,
regarding cognitive outcomes, the effect sizes (k = 30, #ES = 57) vary substantially across the stud-
ies, from �0.62 to 1.84. Among the 53 positive outcomes, 40 are statistically significant. Among the
five large-scale studies (sample size ≥250), three reported an equal or above average effect size
(≥0.16) and among the 52 small-scale studies (sample size <250), 46 reported above average effect
size (≥0.3), according to Cheung and Slavin (2016). The mean effect size is statistically significant
and medium (g = 0.70; 95% CI [0.51; 0.89]), according to Cohen (1988). Regarding retention, a simi-
lar effect (g = 0.59; 95% CI [0.35; 0.83]; k = 20, #ES = 31) is found. Regarding motivation, the effect
sizes (k = 7, #ES = 21) vary from �0.09 to 1.18. Among the 19 positive outcomes, eight are statisti-
cally significant. Only two reported a negative but not statistically significant effect; the mean effect
is statistically significant but small (g = 0.35; 95% CI [0.19; 0.50]). The model fit of this three-level
model was statistically significantly better than the two-level model than the two-level model that
does not consider within-study variance (cognition: χ2 = 17.20, p < .001; retention: χ2 = 5.88,
p = .01; and motivation: χ2 = 6.88, p = .009).

3.2.3 | Heterogeneity

As displayed in Table 6, the statistically significant Q values reveal that effect sizes vary. For
cognition, The I2 reflects that sampling variance, within-study variance, and between-study var-
iance can explain 14%, 33%, and 53% of the observed variance, respectively (Borenstein, 2019).
The similar results are found for retention. For motivation, I2 indicates that sampling variance,
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within-study variance, and between-study variance could explain 39%, 49%, and 12% of the
observed variance, respectively. Thus, moderator analysis is required to inspect sources for het-
erogeneity for cognition but not for motivation since it is not informative to analyze only seven
studies.

FIGURE 3 Forest plot for cognitive outcomes
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3.2.4 | Publication bias

Similarly, the risk of publication bias was assessed for cognition (Banks et al., 2012; Sterne
et al., 2011). In the funnel plot of Figure S1, an obvious asymmetry was found: the outlying

FIGURE 4 Forest plot for motivational outcomes
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studies were distributed in the middle and upper parts, but studies in the bottom of the left
side were missing (Borenstein et al., 2009). This was supported by funnel plot test
(p = .0017), Begg’s rank correlation test (using variance, p = .0009; using sample size,
p = .02), trim-and-fill method (L0

+ = 6), and the adapted Egger’s regression test (p < .0001,
Figure S2; Fern�andez-Castilla et al., 2021). The effect free of publication bias can be esti-
mated by the intercept of this model (Knapp et al., 2017; Stanley & Doucouliagos, 2014),
that is, 0.09 (95% CI [�0.22; 0.40]), which is not statistically significant and substantially
smaller than the original estimate (g = 0.70; 95% CI [0.51; 0.89]). Furthermore, moderator
analyses on publication source and sample size indicate a statistically significant
larger effect in published studies than in gray literature and in small-scale studies than in
large-scale studies (small-study effects; Banks et al., 2012; Borenstein et al., 2009;
Sterne et al., 2011; Table 7). Overall, we conclude that small-study effects were likely
to happen and probably caused by publication bias (Borenstein, 2019; Borenstein
et al., 2009).

3.3 | Research question 2: Moderator analysis

As displayed in Table 7, at least one moderator in methodology characteristics exhibits a statisti-
cally significant relationship with the effect size (p < .0001). Specifically, sample size is nega-
tively related to effect size (estimated coefficient = �0.003, p < .0001), and publication source is
positively related to effect size (estimated coefficient = 0.62, p = .001), while accounting for all
the other variables in the model, that is, small-scale studies or published studies are associated
with larger effects. Aside from these two variables, no other moderator exhibits a statistically
significant relationship with the effect size.

3.4 | Research question 3: Value-added comparison

As displayed in Table 8, only three studies reported six effect sizes for cognition, ranging
from �0.11 to 0.46, but none reached statistical significance. The only statistically signifi-
cant but very small effect is in the study that compares the effect of worked examples on
motivation. A meta-analysis was impossible as the comparisons differed strongly, ranging
from manipulations of aesthetic, choice, competition, worked example, guiding strategy,
and type of AR.

TABLE 6 Results of random-effects meta-analysis in media comparisons

Variable k (N) #ES g SE 95% CI Q τ2level2 τ2level3 I2level2 I2level3

Cognition 30 (4155) 57 0.70 0.10 [0.51; 0.89] 415.2* 0.10 0.16 33% 53%

Retention 20 (2860) 31 0.59 0.12 [0.35; 0.83] 240.4* 0.06 0.22 18% 70%

Motivation 7 (974) 21 0.35 0.08 [0.19; 0.50] 49.14* 0.05 0.01 49% 12%

Notes: CI, confidence interval; #ES, number of effect sizes; g, mean effect size; k, number of studies; N, total sample size;
Q, heterogeneity value; SE, standard error; τ2level2, within-study variance; τ

2
level3, between-study variance; I

2
level2, within-study

heterogeneity index (%); I2level3, between-study heterogeneity index (%).
*p < .05.
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4 | DISCUSSION

This meta-analysis indicates that GBL may address the unique characteristics of chemistry.
Essential game design features such as interactivity, challenges, play, and feedback may address
the challenges in chemistry education such as low performance, low level of motivation, and
the occurrence of negative emotion. Our three-level random-effects model showed that overall,
the effect of chemistry GBL on cognitive and motivational outcomes is larger than for non-
GBL. Among instruction characteristics (activity level of control group, additional instruction,
user grouping, and number of game sessions) and methodology characteristics (randomization,
sample size, publication source, and assessment type), publication source and sample size mod-
erate the effect. Evidence for emotional outcomes and game design features and instructional
design features that improve chemistry GBL is insufficient.

4.1 | Media comparison

Our first goal was to examine whether chemistry GBL has a larger effect on cognitive, motiva-
tional, and emotional outcomes than non-GBL (RQ1). Most studies focused on cognitive out-
comes, providing promising evidence that GBL enhances chemistry learning, but did not
include motivational outcomes, providing moderate evidence that GBL motivates interest in
chemistry. No evidence is available on whether GBL increases positive emotions or decreases
negative emotions as no study reported emotional outcomes. Compared with previous GBL
meta-analyses, this study is the first meta-analysis that uses a three-level random-effects model
to consider the dependency of effect sizes within studies and the first that emphasizes emotion
in GBL.

First, this study confirms chemistry GBL is more effective for cognition (Hypothesis 1) and
retention (Hypothesis 2) than non-GBL. The mean effects for cognition (g = 0.70) and retention

TABLE 8 Results of studies with vs. without specific features in value-added comparisons

Study name
Type of
feature Comparison Outcome N g SE

Martin and
Shen (2014)

Game feature Aesthetic vs. no aesthetic Cognition 61 0.457 0.256

Instructional
feature

Choice vs. no choice Cognition 68 0.143 0.240

Instructional
feature

Competition vs. no
competition

Cognition 69 �0.112 0.239

Chen and
Liao (2015)

Instructional
feature

Procedure-guided vs.
question-guided strategy

Cognition 76 0.437 0.230

Game feature Static-AR vs. dynamic-AR Cognition 76 0.397 0.230

Chen
et al. (2014)

Instructional
feature

Worked example vs. no
worked example

Cognition 105 0.257 0.195

Motivation 105 0.144* 0.195

Notes: g, effect size; N, sample size; SE, standard error.
*p < .05.
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(g = 0.59) reveal a statistically significant medium (g > .5; Cohen, 1988). In other words, the
score of the average person in chemistry GBL would be 0.6 SD above non-GBL, exceeding 73%
of students in non-GBL (Coe, 2002). The effect for cognition is larger than most previous GBL
meta-analyses across all subjects in general and math and science in particular, but equal or
smaller than those in English (Table 1). This effect is also comparable with previous meta-
analyses particular to chemistry with other educational interventions (cooperative learning:
g = 0.59, Apugliese & Lewis, 2017; g = 0.68, Warfa, 2016; cooperative learning, collaborative
learning, problem-based learning, process oriented guided inquiry learning, peer-lead team
learning, and flipped instruction: d = 0.62, Rahman & Lewis, 2020). Most importantly, the
effect for retention is larger than all previous meta-analyses. This implies that 0.59 could be a
benchmark for a meaningful effect in chemistry education.

Three reasons could explain the differences in the magnitude of the overall effects
between current and prior meta-analyses. One reason is that chemistry has a special rela-
tionship to GBL: GBL better align with the key characteristics of chemistry education (see
Introduction) than other subjects. If that is the case, policymakers and practitioners should
implement GBL in chemistry education. Second, technology development: more sophisti-
cated technologies improve learning. Studies included in this meta-analysis, published from
2006 to 2020, are more recent than those from previous meta-analyses, ranging from 1990 to
2012 (Clark et al., 2016; Wouters et al., 2013). During the past decade, new technologies
have emerged (Chen, Wang, et al., 2018). Our included studies applied many sophisticated
technologies. For instance, based on voice recognition, eye movement, and brain wave
analysis, Natural User Interface is used in gaming consoles (Jagodzi�nski & Wolski, 2015);
real-time data capture system is used in blended reality environment (Hodges et al., 2018);
different types of automated tutoring based on student performances are combined with
interactive dialogs with avatars (Halpern et al., 2012); VR simulates experiential learning
(Su & Cheng, 2019); and MR benefits embodied learning (Johnson-Glenberg et al., 2014).
These sophisticated technologies may better support chemistry GBL. Furthermore, students
now have better access to technologies, leading to less difficulty playing chemistry games.
Third, with the development of instructional design, current chemistry GBL may be better
embedded in learning theories than older ones. More attention is paid on integrating game
design and instructional design when designing chemistry GBL (e.g., Mayer, 2014b;
NRC, 2011a; Plass et al., 2015) as most studies are from a later period. Nevertheless, chemis-
try GBL can enhance cognition, and the effect lasts over time.

This study also suggests chemistry GBL is more motivating than non-GBL (Hypothesis 3).
Different from Wouters et al. (2013; d = 0.26, p > .05), a small but statistically significant effect
(g = 0.35; g > 0.2; Cohen, 1988) for motivation was found. In other words, the motivation score
of the average person in chemistry GBL would be 0.4 SD above non-GBL, exceeding 62% of stu-
dents in non-GBL (Coe, 2002).

This finding seems to refute the critique that GBL may attract students, but higher motiva-
tion does not necessarily mean higher learning. Even though students report liking or having
interest in the medium (the game), they tend to perceive that it provides an easier path to learn-
ing and invest less mental effort and time (Salomon, 1984), resulting in less learning compared
with learning without the medium (Clark & Feldon, 2005, 2014). In our case, two included
studies confirm this critique: students prefer GBL to study guides (Wood & Donnelly-
Hermosillo, 2019) or traditional lectures (Stringfield & Kramer, 2014), but no difference in
achievement was found. However, two other studies support our finding that GBL promotes
both achievement and motivation to learn chemistry (Cha et al., 2017; Srisawasdi &
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Panjaburee, 2019). Nevertheless, given that only seven studies reported motivation, this result
should be interpreted with caution.

The cognitive and motivational benefits of chemistry GBL cannot prove a causal relation-
ship between cognition and motivation. In the studies, only five reported both outcomes and
their research methods, one-time pre-posttest design or posttest-only design, may not provide
the required evidence. Instead, the cross-lagged panel model aims to detect causal or reciprocal
relationships between variables, analyzing longitudinal data collected by testing or recording
subjects at multiple points over time (Hamaker et al., 2015; Mulder & Hamaker, 2021; Selig &
Little, 2012). In our included studies, no such method was used. Thus, whether cognition causes
higher motivation in chemistry GBL and whether motivation causes higher cognition remains
open questions.

4.2 | Moderator analysis

Our second goal was to examine the possible moderating effects of instruction and methodology
characteristics, that is the conditions under which GBL is more effective relative to non-GBL
(RQ2). We found some evidence that methodology characteristics moderate the effects, particu-
larly sample size and publication source. Compared with previous GBL meta-analyses, this
study uses more advanced methods to detect and correct publication bias and includes a contin-
uous moderator (i.e., sample size).

Larger effects may be associated more with published studies than gray literature and with
smaller studies than larger ones. The small-study effects, particularly publication bias, tent to
exist. Researchers in chemistry education and GBL should attend to this issue, given that simi-
lar findings were also reported by previous meta-analyses particular to chemistry with other
educational interventions (e.g., Rahman & Lewis, 2020; Warfa, 2016) and by meta-analyses in
GBL (e.g., Lamb et al., 2018; Riopel et al., 2020; Sitzmann, 2011). However, more standardized
methods with high statistical power are needed to assess and control how they impact main
effects (e.g., the trim-and-fill method imputes adjusted effect size) and other aspects in multi-
level meta-analyses (P. Cuijpers, personal communication, April 20, 2020). For instance, should
we add sample size or publication source as covariate of the main effect? How and to what
extent do small-study effects influence the moderator analysis?

Other moderators did not reveal statistically significant effects. Effect sizes of cognition were
equal between non-GBL with active vs. passive instructions, GBL with vs. without additional
instructions, GBL with single vs. multiple sessions (Hypothesis 5), GBL individually vs. in
groups, RCTs versus QEDs, or with closed question vs. non-closed questions. Given the small
number of studies under moderator categories, these results should never be interpreted as evi-
dence that the effects are the same across subgroups or that there is no relation between the
effects and included moderators (Borenstein et al., 2009). Instead, further studies are needed for
more reliable evidence. Take randomization, for example, it is premature to conclude that
larger effects are associated with RCTs than QEDs based on six RCTs versus 24 QEDs. More-
over, it is difficult to explain why we did not find statistically significant results for those moder-
ators due to the limitations of all meta-analyses.

Other variables may help explain the potential sources of between-study variance. Unfortu-
nately, the number of studies in total or under each subgroup was too low to conduct a modera-
tor analysis. Instead, we performed an explanatory analysis based on findings from specific
studies. One potential moderator is game genre. A specific game genre may suit specific
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chemistry content (Wouters et al., 2013). For instance, puzzle games may help build factual
knowledge (e.g., nomenclature, g = 1.8; Chimeno et al., 2006) through strengthening and weak-
ening associations (reinforcement theory; Skinner, 1938); simulation games may help build con-
ceptual knowledge (e.g., redox reaction, g = 0.61; Hodges et al., 2018) through constructing a
schema of the cause-and-effect system (schema theory; Paas & Sweller, 2012); simulation games
with MR or VR may help build procedural knowledge (e.g., titration, g = 0.97; Johnson-
Glenberg et al., 2014) through deliberate practice with feedback (automaticity theory; Fitts &
Posner, 1967; Mayer, 2014b). However, which genres suit which types of chemistry knowledge
for which types of learners and under which contexts remains to be explored.

Another potential moderator is individual difference, such as gender (e.g., Steegh
et al., 2021), prior knowledge (e.g., Lou & Jaeggi, 2019), and prior game experience. Among our
included studies, compared with non-GBL, (1) girls outperformed boys but were not more moti-
vated in chemistry GBL (Okonkwo, 2012), whereas others found no gender difference (Hodges
et al., 2018; Merchant et al., 2013; Weng et al., 2015); (2) students with lower prior knowledge
experienced greater learning gains from GBL than those with higher prior knowledge
(Merchant et al., 2013; Wood & Donnelly-Hermosillo, 2019), but others found no difference
(Sousa Lima et al., 2019); and (3) students with game experience achieved slightly higher learn-
ing gains than those without game experience (Merchant et al., 2013).

4.3 | Value-added comparison

Our third goal was to identify the more effective game design and instructional design features
for chemistry GBL (RQ3). However, studies that used value-added comparisons of GBL with or
without specific features (k = 3) are too few to perform a meta-analysis. This lack of studies
confirms that the study of effective design features of GBL (value-added research) is often
underestimated compared with media comparison research (Boyle et al., 2016; Clark
et al., 2016; Young et al., 2012). In line with previous meta-analyses, more evidence from value-
added research is required for researchers and practitioners.

First, value-added research may provide design guidelines for chemistry GBL, especially for
practitioners such as game developers who create games for learning and teachers who imple-
ment GBL (Mayer, 2014b). GBL can be complex and require well-designed guidelines
(e.g., Eastwood & Sadler, 2013). There are little evidence-informed guidelines for developers to
integrate instructional design with game design features. Most game developers are familiar
with game design but not instructional design. However, most teachers can only change the
GBL environment by instructional design, not the game environment per se. Second, game
researchers must first conduct value-added research to refine GBL environments before com-
paring GBL with non-GBL. Without optimizing GBL through value-added comparisons, it is
unpromising to compare learning with poorly designed games versus other media (Plass
et al., 2020).

According to one side of the Clark-Kozma “media-effects” debate, media comparison studies
come with two challenges. Conceptually, research may confound media (games) with methods;
it is not the medium but the method that causes learning (Clark, 1983, 1991,
1994a, 1994b, 2007; Clark et al., 2008; Kirschner & Hendrick, 2020; Mayer, 2014b). Methodolog-
ically, GBL and non-GBL groups may differ in dimensions (e.g., instructions, learning mate-
rials) other than the game, making it unclear what makes a difference in learning (Clark, 2007;
Clark et al., 2008; Kirschner & Hendrick, 2020; Mayer, 2014b; NRC, 2011a). Therefore, it is
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difficult to attribute learning effects to games, instructional methods, or other factors
(e.g., Daubenfeld & Zenker, 2015).

One solution is to focus on value-added research within one game. The other side of the
Clark-Kozma “media-effects” debate argues that it is unnecessary to separate instructional
methods from games, as together they cause learning (Kozma, 1991, 1994a, 1994b; Parker
et al., 2008). Instead of separating them, a good GBL design integrates instructional design with
game design. Cognitive benefits are not the sole potential of chemistry GBL as games comple-
ment learning experiences with other aforementioned unique potentials (see Introduction). To
employ these potentials, the focus should be less on media comparisons regarding learning
effects, and more on improving GBL via value-added comparisons.

However, this does not mean media comparisons are meaningless and should be abandoned
completely; they are still valuable, especially when testing GBL superiority claims (GBL is more
effective than learning other media; Mayer, 2014b), justifying the reward, the effort, and cost of
developing games for learning, and verifying whether certain instruction methods work specifi-
cally for GBL but not for non-GBL. Furthermore, with media comparison research, another
solution is to equate GBL and non-GBL in all variables except for the game (Mayer, 2014b).
Before that, however, we need high-quality GBL. Again, value-added research comes into play.
Since value-added research and media comparison research serve different functions,
researchers must first conduct value-added comparisons to create a well-designed GBL and
then, if necessary, conduct media comparisons using a rigorous experimental design.

4.4 | Limitations

The following concerns may affect the study findings. First, some studies fail to report back-
ground information. For example, because six studies reported limited or no information about
additional instructions and activity levels of control groups (e.g., Fatokun et al., 2016;
Rastegarpour & Marashi, 2012), their moderating effect is unknown. Although the considered
moderators captured part of high heterogeneity, there is clearly unexplained variance. Missing
information prevents us from including other potential moderators, such as game experience,
educational research experience, or duration of intervention (Wouters et al., 2013; Wouters &
van Oostendorp, 2013). Missing information affects the selection, coding, and/or analysis of
moderators. Furthermore, missing information might affect our assessment regarding study
quality. For instance, GBL adopts debriefing, whereas this information is missing in non-GBL,
or two groups may use different ways to present the learning content. Thus, research may be
contaminated (Kirschner & Hendrick, 2020) as there are more differences between the compari-
son groups other than just the game (Clark, 1983). Again, we cannot include or control this
influence because of the missing information.

Unfortunately, we had to exclude many studies because essential information was missing. Out
of 842 screened articles, only 34 met our criteria, indicating that many chemistry GBL have been
developed but are not well-reported and/or well-tested. The increasing popularity of games stimu-
lated a flood of publication (Hwang & Wu, 2012; Tobias et al., 2011), but most of the excluded stud-
ies only describe the game without testing its effectiveness on learning outcomes (Tobias &
Fletcher, 2012); report students’ subjective opinions, satisfaction, or conceptions of the game
(i.e., the usability test) without an objective assessment; or measure learning outcomes without a
control group. Although post hoc power analysis is not recommended, it indicates we have suffi-
cient power for cognition, retention, and motivation benefits of chemistry GBL.
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Moreover, our broad definition of cognitive and motivational outcomes may bias the main
effects. Studies vary regarding outcome measures (Cooper, 2015), and the limited number of
studies made it impossible to categorize them further into different constructs (e.g., interest,
self-efficacy). As all studies are different, the focus is less on sameness and more on difference:
what makes effect sizes varied (Hattie, 2013). In this sense, for motivation, the meta-analysis
indicates the effects of the interventions on motivation did not vary across type of motivation
(Lazowski & Hulleman, 2016). For cognition, previous meta-analyses on GBL also imply the
effects did not vary across type of cognitive outcomes: knowledge vs. skills (Wouters
et al., 2013), declarative vs. procedural knowledge (Riopel et al., 2020; Sitzmann, 2011), or intra-
personal vs. cognitive learning outcomes (Clark et al., 2016; see Table 1).

4.5 | Implications

We make the following recommendations regarding the practices and theories of chemistry
GBL. For practitioners, the positive effect of chemistry GBL on cognition, retention, and moti-
vation suggests implementing GBL in chemistry education. The overall effect size provides the
benchmark of chemistry GBL interventions for further research, and the distribution of effect
sizes may help researchers anticipate the effects before their study.

For researchers, we agree with previous meta-analyses that it is time to move beyond “whether
or not chemistry GBL works” (media comparison) to “what works for chemistry GBL and why it
enhances learning and others do not” (value-added comparison; Chen et al., 2020; Young et al.,
2012) and conduct more research to provide design guidelines for implementing chemistry GBL.
This meta-analysis suggests that GBL may address the unique characteristics of chemistry. To con-
firm this, more GBL meta-analyses on subjects other than chemistry are needed.

Regarding learning outcomes, more considerations are needed: (1) for cognitive outcomes,
more delayed tests measuring retention (Mayer, 2014b; Wood & Donnelly-Hermosillo, 2019) to
avoid the novelty effect (Clark, 1983); (2) more research in motivation to learn chemistry, which
could be a common but questionable appeal of chemistry GBL (Clark & Feldon, 2005, 2014);
(3) more research into emotions (e.g., Raker et al., 2019) since the most desirable instruction is
that learners learn most from what they enjoy most (Clark, 1982); (4) further research regarding
which game genre is best for which type of learning outcome; and (5) more research on the
relationships between cognition, motivation, and emotion (e.g., Gibbons & Raker, 2019)
in GBL.

Regarding methodology, more high-quality intervention research in chemistry GBL is
required to identify what works, for whom, and under which conditions. Considering the
small-study effects, we suggest researchers to use power analysis (e.g., G*Power; Faul
et al., 2007) to estimate the minimum number of participants needed (Ellis, 2010) when plan-
ning primary studies as statistical power and effect size depend on sample size (Simpson, 2017).
Considering the contextual factors, mixed methods are promising to evaluate the effectiveness
of chemistry GBL; tests or questionnaires should be combined with observations, interviews,
and/or log data (e.g., Hodges et al., 2018; Wood & Donnelly-Hermosillo, 2019). Regarding
assessments, all assessments of the included studies were taken postintervention using separate
tests, such as self-reports on motivation after gameplay when motivation might decrease
(Wouters et al., 2013). We advocate more embedded tests (e.g., stealth assessment for adaptivity;
Shute et al., 2017) or real-time overt assessments (e.g., eye tracking, physiological monitoring,
heart rate, blood pressure; Mayer, 2020; Wouters et al., 2013) focusing on learning processes.
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On the theoretical aspect, more evidence is needed regarding how people learn chemistry
with games (learning mechanics) and how to support chemistry GBL (instructional support).
First, we lack studies on how chemistry games affect learning processes and outcomes; how
they affect motivation or emotions; what the roles of motivation and emotions are; and
how motivation, cognition, and emotions interact with each other. Second, we lack studies on
how people learn better with chemistry games. As GBL is part of multimedia learning, game
researchers can refer to multimedia principles from CTML (Mayer, 2014a). In certain subjects,
some principles enhance GBL (e.g., modality), whereas some do not (e.g., redundancy;
Mayer, 2020). Future studies should explore the learning effects of these multimedia principles
in chemistry GBL.

5 | CONCLUSION

This meta-analysis suggests that GBL may address the unique characteristics of a single
subject. For example, essential game design features such as interactivity, challenges,
play, and feedback may address the challenges in chemistry education such as low per-
formance, motivation, and emotion. More GBL meta-analyses on subjects other than
chemistry are needed. We systematically reviewed 34 studies on the cognitive, motiva-
tional, and emotional effects of GBL in chemistry. Compared with previous GBL meta-
analyses, this study is the first meta-analysis that uses a three-level random-effects model
to consider the dependency of effect sizes within studies. Generally, we found chemistry
GBL is more effective not only for cognition and retention but also motivation than non-
GBL. Publication source and sample size possibly moderate this effect. The substantial
heterogeneity between studies underscores how chemistry GBL is implemented, particu-
larly sample size and publication source. This study used more advanced methods to
detect and correct publication bias and is the first GBL meta-analysis that includes sam-
ple size as a continuous moderator. We found that there may be the small-study effects,
particularly publication bias. Furthermore, this study is also the first meta-analysis that
emphasizes emotions in GBL. Unfortunately, studies assessing learner’s emotions in
chemistry GBL are absent. More robust research is required to provide a clear under-
standing of their true effects. Similarly, more value-added research is needed to identify
more effective game design features and instructional design features and provide design
guidelines for chemistry GBL. We advocate conducting well-developed value-added
research to optimize GBL before comparing it with non-GBL.

In closing, GBL has good chemistry with chemistry education in media comparison
research—chemistry GBL holds the right formula for improved learning and motivation; they
need more value-added research before getting married; and design is the key in this
relationship.
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