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Extended Abstract 

Aluminium rise of demand within the global scale has introduced a major 

challenge towards mining industries in the handling of its by-product, bauxite 

residue (BR, red mud) with about 150 million tonnes of BR annually produced.1 

Bayer process is a caustic hydrometallurgical process that targets aluminium-

bearing minerals from either lateritic or karstic ores. During digestion process and 

desilication steps, some aluminium (Al) and sodium (Na) remain lost by the 

formation of desilication products (DSP). BR also contains a significant portion of 

iron (Fe), calcium (Ca), silica (Si) and titanium (Ti) and about 0.1 wt% of critical 

metals such as scandium (Sc) and other rare earth elements (REEs). The active 

developments of technologies2 often focus on multiple component recoveries, 

targeting Fe and Al as the major components in BR. This is followed by Ti, Sc and 

other REEs since treated residue is now enriched, allowing for more targeted 

approach towards critical metals recovery. This extended abstract proposes the 

conceptual flowsheets available for the pyrometallurgical recovery of the major 

metals, particularly Fe and Al.  

 

Al extraction has been investigated using the soda sintering process3-8, occurring 

between 800 to 1100 oC with the addition of soda and lime (if necessary). Al 

minerals are converted into leachable sodium aluminate form (NaAlO2). Whereas, 

Fe can be recovered via two different carbothermic reductive process, which are 

either smelting or roasting with the addition of a carbon source and necessary 

fluxes. Smelting involves much higher temperatures to obtain molten slag and pig 

iron, whereas the latter reduces hematite into magnetic phases of Fe through the 

pathway of Fe2O3 > Fe3O4 > FeO > Fe.2,9-11 Electric Arc Furnaces were most 

commonly used in scale-up smelting of BR, for Fe recovery and to condition the 

slag further for extraction of other components,3-8,11-14 building material (clinkers 

or geopolymer15) or mineral wool.16 The conditioned slag after smelting for Fe 
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removal can further recover Al by forming leachable calcium aluminates or 

processed for Ti recovery via the carbo-chlorination route13. In reductive roasting 

environment, tube furnaces11 which then scales up to rotary kilns9, are used.  

 

Figure 1 shows various pathways in approaching Fe and Al removal and Table 1 

discusses the advantages and disadvantages of flowsheets.  

 
Figure 1. Conceptual flowsheets for combined recovery of Fe and Al from BR 

 

Paths (I) and (II) explores different combinations of carbothermic reductive 

smelting and Al recovery processes (i.e. soda sintering, caustic leaching of calcium 

aluminates, or carbo-chlorination). Microwave reduction is specially noted as Path 

(III) due to inherent variability of electromagnetic energy that induces reductive 
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process targeting the dielectric phases which is often completed in a fraction of 

time compared to traditional smelting or roasting furnaces.2,10  

 

Table 1. Benchmark assessment, advantages and disadvantages of different processes 

Path Description  Advantages Disadvantages 

(I) Soda sintering 

followed by 

carbothermic 

smelting3-8 

+ Two-step process of recovering 

firstly Al and Na, followed by Fe 

 + High throughput for the 

smelter 

+ Reducing Na gaseous losses in 

smelting 

+ Enriched and conditioned slag 

for downstream processing7-8  

- Time, cost and energy intensive with 

introduction of leaching step before 

smelting  

(II) Carbothermic 

smelting 

followed by 

soda sintering 

+ Enriched slag downstream 

allowing higher recoveries of Al, 

Ti, REEs downstream18 

+ Mild fluxing conditions 

optimising Fe removal and 

preparing for Al and Na recovery  

- Na losses in smelting increases soda 

demand 

- Excess CaO can be detrimental to 

downstream processing 

- High energy consumption in 

smelting due to fluxing 

Carbothermic 

smelting 

followed by 

caustic leaching 

(combined)12,14  

+ Single-step heat recovery 

process targeting Fe, Al and Na 

through conditioning of slag 

+ Downstream residue can be 

used for building materials  

- Proper conditioning of leachable 

calcium aluminates necessary  

- CaCO3 and CaTiO3 inhibit 

downstream recoveries 

Carbothermic 

smelting 

followed by 

carbo-

chlorination13 

+ Fe removal and enriched slag 

targeting Al and Ti chlorides  

+ Possible high recovery of Al as 

AlCl3 easier to introduce into 

electrolysis, avoiding calcination 

step 

- Possible operational challenges in 

carbo-chlorination step 

- AlCl3 less favoured in electrolysis; 

corrosion problems and high 

maintenance costs 

- TiCl4 recovery beneficial at enriched 

concentrations19 

(III) Microwave 

reduction 

process 

(combined)10 

+ Microwave heating selectively 

focuses on moderately absorptive 

(dielectrics) materials 

+ Highly reduced time of 

reduction via microwave 

- Cost and size of microwave 

equipment, limited maximum power  

- Magnetic separation of Fe fractions 

require several step processing 

(IV) Carbothermic 

reductive 

roasting 

(combined)6-7,9 

+ Addition of stoichiometric C 

assist Al and Na recovery6,7 

+ Upscaling is easier in industrial 

equipment for larger batches 

+ Minimal fluxing with lime aids 

downstream processing 

- Fe recovery from maghemite and 

magnetic phase is lesser compared to 

metallic Fe recovery via smelting 

- Longer time needed compared to 

microwave process 

(V) Soda sintering 

followed by 

microwave 

reduction  

+ Previous removal of Al and Na 

assists the Fe metallisation 

+ Short duration of microwave Fe 

recovery assists processing 

- Sintering and leaching step before 

microwave reduction costs energy 

and water.  

 

 

An alternative hydrometallurgical route in Path (I) is Serial Combined Bayer-

Sintering Process17 involving leaching lime-soda sintered BR into Bayer digestion 

conditions instead of mild alkaline leaching, allowing reintroduction of liquor into 
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Bayer cycle. Finally, Paths (IV) and (V) explores carbothermic reductive roasting 

pathway with soda sintering in different sequences. By combining the many 

methods for Fe and Al removal, selecting favourable flowsheet, and conditioning 

downstream residues depending on target component and method of recovery, BR 

valorisation can be effectively accomplished. 
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