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Abstract: Aiming to synthesize high-value renewable monomers for the preparation of renewable 
specialty polyamides, we designed a new protocol. Amino-esters, produced via the hydrogenation 
of unsaturated nitrile-esters, are alternative monomers for the production of these polymers. A high 
monomer yield can be obtained using a Raney®-nickel catalyst despite the drawback of fast 
deactivation. The hydrogenation of 10-cyano-9-decenoate (UNE11) was tentatively reactivated by 
three different regeneration procedures: solvent wash, regeneration under hydrogen, and 
regeneration under sonication. Among these procedures, the in-pot catalyst regeneration (H2 30 bar, 
150 °C) demonstrated complete activity recovery and full recycling.  
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1. Introduction 

The impressive growth in demand for biodegradable or renewable polymers from several 
industrial fields is a dramatic driving force for new investigations. Polymers containing an amide 
functional group are obtained from amino-acid monomers from natural oils, such as castor oil, for 
the production of Rilsan® with suitable catalysts. Since the discovery of Ni(CO)4 complexes by Mond 
in 1888 [1], organo-nickel chemistry saw comprehensive developments. Nickel-based catalysts 
proved their effectiveness in several types of reactions, including cross-couplings [2], methanations 
[3,4], nucleophilic allylations [5,6], oligomerizations [7], hydrodeoxygenations [8], and 
hydrogenations [9]. This last reaction can make use of Raney®-nickel, which is the most popular 
catalyst in the field. Invented by Murray Raney in 1927, the catalyst is prepared by leaching a doped 
Ni and Al alloy with a sodium hydroxide solution [10]. Raney®-nickel catalysts, also known as sponge 
nickel, have magnetic properties and are used industrially in the production of adipic acid, which 
occurs via benzene reduction, performed in the slurry phase, to obtain cyclohexane, which is 
subsequently oxidized to adipic acid [11]. Sorbitol is also produced via the catalytic hydrogenation 
of glucose over Raney®-nickel catalysts [12]. Another example of products that are obtained using 
this catalyst can be found in di-amine monomers, which are produced via the reduction of di-nitriles, 
such as in the reduction of adiponitrile to hexamethylenediamine [13]. A further example is the use 
of this catalyst in the preparation of amino-ester monomers, such as methyl 11-aminoundecanoate, 
from 10-cyano-9-decenoate (Scheme 1) [14]. Methyl 11-aminoundecanoate is the alternative monomer 
used for the production of polyamide 11 [14,15]. Raney®-nickel catalysts are designated in forms W1 
to W8. The differences in these catalysts are the varied activities that they show, which are the result 
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of different preparation methods, alloy composition, NaOH concentration, the temperature at which 
the alloy is added to the basic solution, the temperature and duration of alloy digestion after addition 
to the base, and the method used to wash the catalyst from the sodium aluminate and excess base 
[16]. Type W6 is the most active catalyst and has several well-known advantages, including high 
activity and selectivity, but its poor stability and short lifetime mean that catalyst replacement is 
required, which entails high costs and environmental impact. Deactivation is caused by several 
factors: chemical (poisoning, vapor compound formation accompanied by transport, and vapor–solid 
and/or solid–solid reactions), mechanical (fouling and attrition/crushing), thermal (thermal 
degradation), and sintering (agglomeration of metal particles) [11,17,18]. The storage solvent can also 
affect catalyst stability. It is known that a catalyst in the W5 form can lose its activity after about a 
week of storage in ethanol, due to the formation of acetaldehyde, which poisons the catalyst [19]. 

The hydrogenation of nitriles to primary amines leads to the co-production of secondary and 
tertiary amines. The choice of catalyst and reaction conditions can dramatically improve selectivity 
and yield (about 100% primary amine) and prevent co-product formation.  

The synthesis of amino-ester from nitrile-esters was tested with different catalysts such as Ru 
and Co and Raney-nickel catalysts [20]. The aim of the present work is to study the deactivation and 
reactivation mechanism of Raney-nickel, as it is deactivated faster. Raney-nickel or sponge nickel is 
popular in chemical industry for the reduction of nitriles to amines. 

In nitrile hydrogenations, Raney®-nickel deactivation is caused by chemisorption through 
multiple bonds and 𝜋 backbonding [21].  

The most common procedures for exhausted (inactive) Raney®-nickel recycling include acidic 
treatment (acetic acid at 20–50 °C) [22] or treatment with non-oxidizing aqueous alkaline solution 
(NaOH at 40–150 °C). More recently, Ping et al. proposed a regeneration method that involves coke 
elimination with water, from 300 °C to 450 °C, for a catalyst that is deactivated during the 
dehydrogenation of cyclohexane [23].  

Safety Caution!!  
Particular attention must be paid when handling Raney®-nickel because it is self-heating and 

spontaneously ignites upon contact with air (pyrophoric nature). This phenomenon is caused by the 
high dispersion and strong lattice distortion of Raney®-nickel. Moreover, the hydrogen that is 
contained within and its consequent gas desorption can lead to self-ignition. For these reasons, 
contact with air must be prevented by keeping the catalyst wet within liquids, such as water. 

Raney®-nickel should NEVER be thrown into a waste receptacle, and always deposited in 
special waste disposal equipment. 

2. Results and Discussion 

The hydrogenation of (9Z)-10-cyano-9-decenoate (UNE11) to methyl-11-amino-undecanoate 
(AE11) occurs over two steps. Firstly, the double bond at C9 and C10 is reduced, followed by the 
reduction of nitrile group to amine (Scheme 1).  

 
Scheme 1. Hydrogenation of (9Z)-10-cyano-9-decenoate (UNE11) to methyl-11-amino-undecanoate 
(AE11). 

According to literature on the hydrogenation of nitrile compounds [21,24], the production of 
amines from the reduction of nitrile compounds occurs via the formation of a primary imine 
(aldimine, Scheme 2), an extremely reactive intermediate, which, in addition to the formation of the 
desired amine, can lead to the formation of side-products, including secondary imines (I2), which are 
more stable. A number of varying reaction conditions were considered, as were the deactivation 
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mechanisms of the Raney®-nickel. For example, in the hydrogenation of fatty nitriles and dinitriles, 
there is a catalyst deactivation, although at a much lower rate than in the present case. 

2.1. Reaction Conditions 

2.1.1. Reaction Time 

As depicted in Table 1, the highest production of AE11 was obtained after 180 min of reaction 
time. The presence of the saturated nitrile ester (SNE11) (62%) after 120 min shows that the 
hydrogenation of the nitrile function was the rate-limiting step. This is in accordance with the studies 
performed by Kukula and Koprivova [24], on the hydrogenation of cis-2-pentenenitrile. The reaction 
rate of the double bond from cis-2-pentenenitrile to valeronitrile was the same as that for valeronitrile 
to pentylamine. They concluded that the double bond of cis-2-pentenitrile was hydrogenated while 
the molecule was adsorbed into the active sites of the catalyst by the nitrile functional group [24]. The 
reduction of nitrile was also much slower using the doped Raney®-nickel catalyst, which showed 
higher reactivity for the reduction of C=C double bond than for the reduction of C ≡ N (nitrile). Other 
causes for the high reactivity of the C=C bond are its proximity to the nitrile function and the cis 
conformation of the molecule.  

Table 1. Influence of reaction time on the hydrogenation of UNE11. Reaction conditions: 60 bar H2 
atmosphere, 1 eq. NH3 (1 equivalent mol of NH3 to UNE11), 10 wt.% Raney®-Nickel (wt.% to UNE11), 
reaction time 180 min (trial 1), 120 min (trial 2). AE11: methyl-11-aminoundecanoate, UNE11: (9Z)-10-
cyano-9-decenoate, SNE11: methyl-10-cyanodecanoate. I2: secondary imine, A2: secondary amine, 
Dimer: dimer of the amino-ester (see Scheme 2 for molecular structure). Percentages of the reaction 
species were measured by Gas Chromatography Flame ionization (GC-FID) relative peak area. 

Trials 
t 

(min) 
H2 bar NH3/UNE11 (mol/mol) 

AE11  
% 

UNE11  
%  

SNE11  
% 

I2 
% 

A2 
% 

Dimer 
% 

1  180 60 1.15 92 - 3.0 0.09 4.44 - 
2  120 60 1.15 36 - 62 0.28 0.27 0.02 

The deactivation percentage (loss of AE11 yield) was calculated using the difference between 
the GC peak area percentage of AE11 formation when the catalyst (first cycle) was used for the first 
time and the percentage peak area of AE11 formation in a second cycle (second cycle) of 
hydrogenation (Equation (1)).  

Catalyst deactivation % = (conv1 − conv2) × 100, (1) 

where conv1 is the conversion of UNE11 to AE11 obtained in the first cycle, and conv2 is the 
conversion of UNE11 to AE11 obtained in the second cycle. Deactivation of the catalyst occurs 
between the hydrogenation cycles.  

Compared to the experiments carried out at 40 bar H2 (67% AE11 peak area obtained), working 
at higher hydrogen pressure (60 bar) led to higher AE11 production (91%). However, higher pressure 
caused higher catalyst deactivation (Equation 1). Secondary amine (A2) formation in the experiments 
performed at 60 bar (Table 2) was higher (4.4%) than at 40 bar of pressure (0.25%). 
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Table 2. Influence of H2 pressure. Trial 1 and 3: first cycle catalyst hydrogenation of UNE11 at 40 and 
60 bar H2 atmosphere. Trials 2 and 4: Second cycle catalyst hydrogenation of UNE11 at 40 and 60 bar 
H2 atmosphere without any type of reactivation. AE11: methyl-11-aminoundecanoate, UNE11: (9Z)-
10-cyano-9-decenoate, SNE11: methyl-10-cyanodecanoate. I2: secondary imine, A2: secondary amine, 
Dimer: dimer of the amino-ester (see Scheme 2 for molecular structure). Percentages of the reaction 
species were measured by GC–FID relative peak area. 

Trials 
H2 
bar 

NH3/UNE11 
(mol/mol) 

AE11 
% 

UNE11  
% 

SNE11  
% 

I2 
% 

A2 
% 

Dimer 
% 

Deactivation 
(%) 

1  40 1.00 67 - 30 0.66 0.25 0.03 - 
2  40 1.00 41 - 57 0.38 0.39 0.03 26 
3  60 1.05 91 - 11 0.09 4.44 - - 
4  60 1.10 47 - 50 0.19 0.91 - 44 

These results suggest that the catalyst deactivation mechanism is related to the adsorption of the 
secondary (A2) and tertiary (A3) amines onto the catalyst surface, and that the active sites are blocked 
by steric hindrance. In further investigation, it would be possible to isolate a secondary/tertiary amine 
larger amount and use it to pre-treat a fresh catalyst in order to validate this hypothesis. The 
formation of a secondary imine (I2) can be explained by the nucleophilic addition of the primary amine 
(AE11) to the α-carbon of the aldimine intermediate (pathway b) or via imine–imine nucleophilic 
addition (pathway a). The secondary amine (A2) can be obtained via the hydrogenolysis of the 
diamine intermediate or hydrogenation of secondary imine (I2), which is formed through loss of 
ammonia of secondary diamine. (Scheme 2). 

 

Scheme 2. Hydrogenation of UNE11 to AE11 and corresponding side-reactions. Formation of a 
secondary amine and tertiary amine: (a) via condensation between two primary imines; (b) via 
condensation amine-imine. Dimer formation (c) via condensation of two AE11 molecules. UNE11: 
(9Z)-10-cyano-9-decenoate, SNE11: methyl-10-cyanodecanoate, AE11: methyl-11-aminoundecanoate, 
I2: secondary imine, A2: secondary amine, Dimer: dimer of the amino-ester. Mechanism based on 
Krupka and Pasek’s publication [21]. 

We also detected by GC–MS analysis the formation of dimers from condensation of two 
molecules of AE11; thus, oligomers are also likely. In fatty nitrile and dinitrile hydrogenation, Raney 
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catalysts are usually used, but they deactivate slowly compared to the present case. Therefore, it is 
likely that the oligomers also contribute to catalyst deactivation by physical deposition. 

2.1.2. Influence of UNE11 Concentration  

No influence on the concentration wt.% variation of UNE11 was observed once the conversion 
of UNE11 to AE11 was similar (92%–95%) (Table 3). 

Table 3. The influence of UNE11 concentration on the hydrogenation reaction rate. AE11: methyl-11-
aminoundecanoate, UNE11: (9Z)-10-cyano-9-decenoate, SNE11: methyl-10-cyanodecanoate, A2: 
secondary amine. UNE11 molecular weight (209.29 g/mol); molar concentration in parentheses. 

Trials 
UNE11 
wt.% 

(mol/L) 

H2 
bar 

NH3/UNE11 
(mol/mol) 

AE11 
% 

UNE11  
% 

SNE11  
% 

I2 
% 

A2 

% 
Dimer 

% 

1 31 (1.25) 60 1.10 93 - 2.2 0.1 3.7 - 

2 40 (1.9) 60 0.90 92 - 0.2 0.1 6.1 0.1 

3 52 (2.15) 60 1.10 95 - 0.1 0.03 3.7 0.3 

2.1.3. Influence of Ammonia on the Conversion of UNE11 

In terms of mechanism [21], AE11 (methyl-11-aminoundecanoate) and the primary imine 
(aldimine) are adsorbed on the catalyst surface, but the primary imine is not detected in the product 
solution. The secondary amine is formed by reaction of amino-ester and the primary imine, and then 
desorbs from the catalyst into the solution (Scheme 2). 

The results of the experiments reported in Table 3 agree with those carried out by Von Braun on 
catalyzed nitrile derivatives [25]. In his experiments, it was observed that the formation of secondary 
amines was minimized by carrying out the hydrogenation in the presence of ammonia. The primary 
imine formed then had less of an opportunity to undergo the reaction (Scheme 2a, pathway to form 
secondary amine A2) once ammonia was also added to the primary imine in a competitive reaction 
forming the gem-diamine (Scheme 3). 

 

Scheme 3. Formation of gem-diamine. 

Under hydrogenolysis, the primary amine is formed (Scheme 4).  

 

Scheme 4. Formation of primary amine from hydrogenolysis of the gem-diamine. 

In the presence of NH3, the condensation reaction equilibrium is shifted to suppress the 
formation of the secondary imine and, thus, the secondary and tertiary amines. The concentration of 
the secondary amine is reduced together with the reaction with the primary amine. Other possible 
explanations could be the selective poisoning in the catalyst or the modification of the electronic 
properties of the catalytic metal [18]. Another base, such as NaOH or KOH, is sometimes used instead 
of ammonia to reduce the formation of secondary amines. However, here, this option was not 
selected, as those bases can also affect the ester function. 
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The influence of the NH3 equivalents on the conversion of UNE11 to AE11 is illustrated in Table 
4. The lowest conversion of UNE11 was obtained in the experiment with the lowest number of NH3 
equivalents (trial 1). Surprisingly, it was also found that a higher number of NH3 equivalents (trial 2) 
gave a conversion that was 18% lower than the conversion obtained in trial 3 with 1.1 eq. A higher 
secondary imine percentage was achieved in trial 2 (12%) than in trial 1 (0.55%). One possibility for 
this result is that higher concentration of NH3 may inhibit Raney®-nickel, while a too low ammonia 
concentration favors the formation of heavier side products. The fact that 12% secondary imine was 
detected in the bulk solution corroborates this hypothesis. A part of the ammonia vaporizes, and the 
total pressure is kept constant, which also means that only a lower partial pressure of hydrogen is 
applied [26]. At constant total pressure, there is a split between partial pressure of ammonia and 
partial pressure of hydrogen. The total pressure measured in the experiment with absence of catalyst 
or reaction is higher (62 bar) than that calculated (57 bar) at the temperature reached at equilibrium 
of the unit. This result shows that ammonia vaporization occurred. 

Table 4. Influence of equivalents of ammonia on the conversion of UNE11 to AE11. H2 pressure: 60 
bar. AE11: methyl-11-aminoundecanoate, UNE11: (9Z)-10-cyano-9-decenoate, SNE11: methyl-10-
cyanodecanoate. I2: secondary imine, A2: secondary amine, Dimer: dimer of AE11. (See Scheme 2 for 
molecular structure). Percentages of the reaction species were measured by GC–FID relative peak 
area. 

Trials NH3/UNE11 
(mol/mol) 

AE11 
% 

UNE11 cis 
% 

SNE11  
% 

I2 
% 

A2 

% 
1 0.70 73 3.9 21 0.55 0.5 
2 1.38 75 - 8 12 0.3 
3 1.10 93 - 2.2 0.07 3.7 

2.1.4. Solvent Influence on the Conversion of UNE11 

The use of toluene and methyl-cyclohexane was found to have no significant influence on the 
conversion of UNE11 to AE11 (Table 5). 

Table 5. Influence of the solvent on the conversion of UNE11 to AE11. H2 pressure: 60 bar. Trial 1: 
hydrogenation of UNE11 with toluene, Trial 2: hydrogenation of UNE11 with methyl-cyclohexane. 
AE11: methyl-11-aminoundecanoate, UNE11: (9Z)-10-cyano-9-decenoate, SNE11: methyl-10-
cyanodecanoate. I2: secondary imine, A2: secondary amine, Dimer: dimer of AE11 (see Scheme 2 for 
molecular structure). Percentages of the reaction species were measured by GC–FID relative peak 
area. 

Trials 
AE11 

% 
UNE11  

% 
SNE11  

% 
I2 
% 

A2 

% 
1 91 - 2.80 0.02 4.8 
2 93 - 2.18 0.10 3.7 

2.2. Catalyst Reactivation 

Three different methods were tested for the study of catalyst reactivation: (a) catalyst washing 
with methanol and with the reaction solvent, (b) catalyst regeneration under hydrogen atmosphere, 
and (c) catalyst regeneration under sonication. 

2.2.1. Catalyst Washed with Methanol and Reaction Solvent 

After the reaction, the catalyst was washed with 3 × 10 mL of MeOH and 3 × 10 mL of toluene or 
only 3 × 10 mL of toluene and reused for a new cycle of UNE11 hydrogenation (Table 6).  

Table 6. Trial 1: hydrogenation of UNE11 first cycle catalyst, Trial 2: hydrogenation of UNE11 second 
cycle catalyst, catalyst washed with MeOH, Trial 3: hydrogenation of UNE11 second cycle catalyst, 
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catalyst washed with toluene. H2 pressure: 60 bar. Trial 1: hydrogenation of UNE11 with toluene, 
Trial 2: hydrogenation of UNE11 with methyl-cyclohexane. AE11: methyl-11-aminoundecanoate, 
UNE11: (9Z)-10-cyano-9-decenoate, SNE11: methyl-10-cyanodecanoate. I2: secondary imine, A2: 
secondary amine, Dimer: dimer of AE11 (see Scheme 2 for molecular structure). Percentages of the 
reaction species were measured by GC–FID relative peak area. 

Trial 

NH3 

(eq. to 
UNE1

1) 

AE11 
% 

UNE11 
% 

SNE11 
% 

I2 
% 

A2 

% 
Deactivation  
(loss of yield) 

1 1.12 91 - 2.8 0.02 4.8 - 
2 1.15 44 - 54 0.57 1.17 47 
3 1.1 47 - 50 0.19 0.91 44 

Trials 2 and 3 prove that the catalyst is deactivated after only a single reaction cycle. No catalyst 
reactivation was observed after catalyst treatment with MeOH or toluene. 

2.2.2. Catalyst Reactivation under Sonication 

The catalyst was recovered from the reactor and poured into a solution of MeOH.  
The catalyst used in trial 3 and trial 4 (Table 7) was immersed in MeOH and sonicated at 120 

kHz (input power 100 and 200 W). Nevertheless, the conversion of UNE11 to AE11 after catalyst 
sonication at 100 W and 200 W was respectively 10 and 15 points lower than that achieved after the 
washing procedure with MeOH and toluene. 

GC analysis of the MeOH washing solution after sonication showed AE11, SNE11, and the peaks 
that correspond to the formation of the secondary imine and the secondary amine. 

Table 7. 1: First cycle hydrogenation of UNE11. 2: hydrogenation of UNE11 with catalyst from 1 
recovered and washed with 3× MeOH and 3× toluene. 3: hydrogenation of UNE11 with the catalyst 
(from trial 2) reactivated in MeOH solution under 120 kHz, 100 W input power. 4: hydrogenation of 
UNE11 with the catalyst (from trial 2) reactivated in MeOH solution under 120 kHz, 200 W input 
power. AE11: methyl-11-aminoundecanoate, UNE11: (9Z)-10-cyano-9-decenoate, SNE11: methyl-10-
cyanodecanoate. I2: secondary imine, A2: secondary amine, Dimer: dimer of AE11 (see Scheme 2 for 
molecular structure). Percentages of the reaction species were measured by GC–FID relative peak 
area. 

Trial 
AE11 

% 
UNE11 cis 

% 
SNE11  

% 
Imine 

% 
A2 

% 
Dimer 

% 
Deactivation 

% 
1 91 - 2.8 0.02 4.80 - - 
2 44 - 54 0.57 1.17 0.02 47 
3 34 - 65 0.53 0.41 0.02 57 
4 29 0.26 71 0.32 0.39 - 62 

As observed (Table 8) during the reactivation tests with and without ultrasounds (silent 
conditions), AE11 and SNE11 are the major products released from the catalyst surface. A higher 
percentage of SNE11 than AE11 (Table 8) being detected is an indication that more intermediate 
nitrile than amine remains on the deactivated catalyst. In the presence of ultrasound, the major 
products are SNE11 and AE11. 
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Table 8. 2: Solution of catalyst reactivation under MeOH and silent conditions, 3: solution of catalyst 
reactivation under MeOH, sonication treatment at 120 kHz and 100W, 4: solution of catalyst 
reactivation under MeOH, sonication treatment at 120 kHz and 200W. AE11: methyl-11-
aminoundecanoate, UNE11: (9Z)-10-cyano-9-decenoate, SNE11: methyl-10-cyanodecanoate. I2: 
secondary imine, A2: secondary amine, Dimer: dimer of AE11 (see Scheme 2 for molecular structure). 
Percentages of the reaction species were measured by GC–FID relative peak area. 

Method 
AE11 

% 

UNE11 
cis 
% 

SNE11  
% 

I2 

% 
A2 

% 
Other Species (Higher Retention Time 

Species) % 

2 18.7 - 44 2.0 14.7 20.5 
3 36 - 62 2.39 - - 
4 47 - 50 0.2 0.9 1.1 

Higher ultrasonic power (200 W) was deleterious because it totally dispersed the catalyst into 
the liquid phase. For this reason, only the catalyst sonicated at 100 W was considered for the following 
reactivation tests. 

2.2.3. Caustic Treatment 

The catalyst from the first cycle was unloaded and divided in two fractions, with each used for 
different reactivation tests, before removing from the reactor and treating with a 0.05 N NaOH 
solution for sonication at a frequency of 120 kHz and 100 W of input power for 1 h (Table 9). 

Table 9. 1: Silent conditions (without ultrasounds) in MeOH solution, 2: silent conditions in NaOH 
solution, 3: hydrogenation of UNE11 with catalyst reactivated under sonication, 120 kHz, 100 W in a 
MeOH solution, 4: hydrogenation of UNE11 with catalyst reactivated under 120 kHz, 100 W in a 
NaOH solution. AE11: methyl-11-aminoundecanoate, UNE11: (9Z)-10-cyano-9-decenoate, SNE11: 
methyl-10-cyanodecanoate. I2: secondary imine, A2: secondary amine, Dimer: dimer of AE11 (see 
Scheme 2 for molecular structure). Percentages of the reaction species were measured by GC–FID 
relative peak area. 

Method 
AE11 

% 

UNE11 
cis 
% 

SNE11 
% 

Imine 
% 

A2 
% 

Dimer 
% 

Deactivation (Loss of 
Conversion) 

1 44 - 54 0.6 1.2 0.02 47 
2 44 0.14 54 0.2 0.6 - 47 
3 34 - 65 0.5 0.4 0.02 57 
4 60 - 39 0.7 0.9 - 31 

A higher percentage of AE11 (60%) was obtained in the experiment in which the catalyst was 
sonicated in the 0.05 N NaOH solution than in the experiment with no sonication (44%) and the 
experiment in which the catalyst was sonicated in a methanol solution (34%). 

2.2.4. Catalyst Reactivation under H2 Pressure 

Raney®-nickel was saturated with hydrogen during its preparation, and one of the hypotheses 
of catalyst deactivation is the desorption of the hydrogen species present in the active sites of the 
catalyst. 

Fouilloux described, in his review [27], the existence of a variety of hydrogen species in Raney®-
nickel catalysts. Using thermal desorption experiments, he found that H2 adsorbs onto the catalyst in 
reversible and irreversible forms. The two species may correspond to the bridged and linear 
adsorptions observed for hydrogenation using the neutron inelastic scattering technique. The 
strongly adsorbed hydrogen seems to be inactive in benzene, acetone, and acetonitrile 
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hydrogenations, but the presence of weakly adsorbed linear hydrogen is crucial to the success of the 
reaction.  

Hochard [28] used temperature-programmed desorption (TPD) and inelastic neutron scattering 
techniques to detect the presence of weakly and strongly adsorbed hydrogen on the catalyst. In his 
paper, he claimed that only weakly adsorbed hydrogen is active for hydrogenation. He observed that 
the nitrile molecule and hydrogen compete for the same active site, during the reduction of 
acetonitrile, while the primary amine products of the reaction compete for several active sites on the 
catalyst. Although the desorption of the amines from the catalyst should be fast, they may be 
associated with the active sites that result from the presence of alumina when reabsorption occurs 
[28]. In his experiments, he found that 70% of the total hydrogen adsorbed in the solid was consumed 
by the reaction at 373 K and that the residual was adsorbed onto the (110) and (111) nickel faces. The 
linear hydrogens were only detected after the re-adsorption of hydrogen at higher pressure. Multi-
bonded species at low coverage are more strongly adsorbed than hydrogen to linear sites.  

The formation of oligomeric/polymeric species on the surface of the Raney®-nickel catalyst can 
be an important factor in catalyst deactivation. These species can result from the reaction between 
amino-esters that are adsorbed onto the catalyst surface, thus blocking the active sites of the catalyst 
(Scheme 5). Raney catalysts deactivate more slowly in the hydrogenation of fatty nitriles and 
dinitriles, where these oligomerization reactions cannot take place, compared to the present case; 
thus, it is quite likely that oligomers adsorbed on the surface are hydrogenolyzed during the 
reactivation under hydrogen (see Figures S1 and S2, Supplementary Materials).  

 

Scheme 5. Polymerization of 11-aminoundecanoate (AE11) with formation of n MeOH. 

The hydrogenolysis (cleavage of secondary amine (A2) into amino-ester (AE11) and methyl-
undecanoate) of the species adsorbed onto the catalyst surface can occur under a hydrogen 
atmosphere (Scheme 6). 

 
Scheme 6. Hydrogenolysis of secondary amine (A2) into amino-ester AE11 and methyl undecanoate. 

In Table 10 we describe the type of assays for catalyst regeneration.  

Table 10. Assays of catalyst regeneration at 90, 150, and 200 °C, with/without a hydrogen 
atmosphere. 

Reactivation Assay Temperature (°C) H2 (bar) Reactivation Time 
a 90 30 60 
b 150 30 60 
c 200 70–80 60 
d 200 70–80 120 
e 200 0 60 

In Table 11, we show the influence of hydrogen on catalyst reactivation. 
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Table 11. Efficiency of the reactivation assays tested in a second cycle hydrogenation of UNE11. AE11: 
methyl-11-aminoundecanoate. 

Trial Reactivation Assay 
AE11 

% 
1st cycle 
reaction 

- 91 

1 - 44 
2 a 48 
3 b 91 
4 c 90 
5 d 62 
6 e 15 

The catalyst completely recovered its activity after treatment under 70–80 bar at 200 °C and in 
pilot conditions of 150 °C and 30 H2 bar (trials 4 and 3). The regeneration treatment time is also an 
important factor, as a higher treatment time led to the catalyst recovering only 22 points of AE11 
conversion (trial 5) compared to no treatment (trial 1). Moreover, no reactivity was observed in the 
absence of hydrogen (trial 6), and higher catalyst deactivation was observed. 

In GC/MS analysis of the solvent of b and c catalyst reactivation, methyl-undecanoate was 
detected, proving the hypothesis of hydrogenolysis of secondary or tertiary amines adsorbed on the 
catalyst surface (see Figure S1, Supplementary Materials).  

3. Repeatability 

A relative standard deviation (RSD) value of 4.2%, for the two repetitions after catalyst 

reactivation under H2 pressure at 200°C, indicates the repeatability of the reaction (Table 12). 

Table 12. Repeatability experiments tests. 

Trial AE11 % 𝑿ഥ S2 Sw 2 × RSD 
(2 Sigma) 

1 90.2 
90.1 3.7 1.9 4.2% 2 88.2 

3 92 

4. Materials and Methods 

4.1. Hydrogenation of Methyl 10-Cyanodecenoate (UNE11) 

The hydrogenation of UNE11 was performed in a 300 cm3 stirred batch reactor. The temperature 
was controlled automatically by heat exchange via the wall and a cooling coil located inside of the 
reactor. The reaction media was agitated by a gas-inducing Rushton turbine. The autoclave was also 
linked to a vent line, which can sustain pressure at 0–200 bar, which was connected to a Yokogawa 
µR 10000 (Lyon, Rhône-Alpes, France) recorder and a manometer.  

The solvents, methanol, toluene, and methylcyclohexane, were purchased from Merck-Sigma 
Aldrich (Lyon, Rhône-Alpes, France) and VWR chemicals (Briaire, France). Methyl (9Z)-10-cyano-9-
decenoate 98% was produced in the R&D laboratories of Arkema Rhône-Alpes Research Center 
(CRRA). The Commercial catalyst Raney®-nickel 4200 (W.R. Grace and Co. Raney® Merck-Sigma 
Aldrich, Lyon, Rhône-Alpes, France) was used, as a slurry in H2O, as the heterogeneous catalyst for 
the synthesis of amino-ester monomers [14]. 

This study examines the reactivation of a Raney®-nickel catalyst in relation to the hydrogenation 
of methyl (9Z)-10-cyano-9-decenoate (UNE11) to methyl-aminoundecanoate (AE11). 
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4.2. Treatment of Raney®-Nickel Catalyst 

Commercial Raney®-nickel is usually stored in water in order to minimize surface oxidation and 
delay the catalyst aging process. The extraction of the water that remains in the catalyst entails 
washing with methanol (3 × 10 mL), followed by 3 × 10 mL of the chosen solvent. When weighing the 
wet catalyst, we considered the catalyst weight to be constituted by 50% of the final washing solvent 
and 50% of the catalyst itself (estimated). 

4.3. Reaction Set-Up 

The operating conditions used in the various experiments are reported in Table 13. Solvent, 
catalyst, and (9Z)-10-cyano-9-decenoate were poured into the reactor to a maximum volume of 180 
cm3, and gaseous ammonia was then added. The reaction was carried out at constant pressure, in the 
40–60 bar range, by manual hydrogen feed regulation. The temperature was set to 90 °C. Hydrogen 
consumption lasted 3 h. 

Table 13. Reaction conditions. 

Stirrer speed (tr/mn) 1000–1500 
UNE11 concentration (wt.% to solvent) 30 (1.25 M), 40 (1.9 M), and 50 (2.15 M) 

Solvent  Toluene or methylcyclohexane 
Temperature (°C or K) 90 °C (363 K) 

Reaction time (min) 120–180 
Catalyst loading  

(dry eq. wt.% related to UNE11) 
10 wt.% 

NH3 (equivalents to UNE11) 0.9 to 1.15  

4.4. Ultrasound Reactivation Set-Up 

The catalyst reactivation experiments under sonication were performed in a round-bottom flask 
placed in an ultrasonic cleaning tank with an ultrasonic mono-frequency module generator at 25 kHz 
and a multi-frequency module generator at 40, 80, and 120 kHz (SONIC DIGITAL MULTI). 
Cavitation density changed with the position in the tank. In order to precisely locate the flask where 
the highest energy density and cavitation distribution would be applied, we used an aluminum foil 
to determine the right position for a more efficient sonication. The cavitation phenomenon’s more 
aggressive, higher energy density, such as jetting cavitation, can be observed by the appearance of 
holes in the foil sheet.  

The reaction species were identified and quantified (peak areas in percentage) by gas 
chromatography with flame ionization detection (FID). Reaction samples were prepared at a 
concentration of 66 µL/mg in CHCl3. 

4.5. Instrumentation and Acquisition Parameters 

Gas chromatography was performed using a gas chromatograph 6890 Series GC System Agilent 
(Hewlett-Packard-Straße 8, Waldbronn, Germany) equipped with a flame ionization detector and an 
autosampler. Here, 1-µL aliquots of the samples were injected. The retention gap was attached to a 
30 m × 0.530 mm ID column filled with a 1.0-µm- thick Rtx®-200 film stationary phase. The initial 
oven temperature of 60 °C was increased to 165 °C at a rate of 15 °C/min, then to 200 °C at a rate of 4 
°C/min, and finally to 300 °C at a rate of 25 °C/min. 

The injector and detector temperatures were set at 230 °C and 320 °C, respectively. Helium was 
used as the carrier gas for the mobile phase at a flow control from 3.5 mL for 8 min and increased to 
6.0 mL/min with a rate of 0.25 mL/min/min and hold time of 22 min. The column was backflushed at 
320 °C for a total of four void volumes after every run to prevent the appearance of ghost peaks from 
previous runs. 

The peak area percentage of AE11 species was assigned with an uncertainty of ±4% (2 × RSD = 
2σ). The same relative standard deviation was assumed for the other products. 
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5. Conclusions 

Amino-esters are the perfect building blocks for the production of polyamides. These monomers 
can be obtained through the reduction of unsaturated nitrile esters. The hydrogenation of nitrile 
compounds to the corresponding amines can be carried out smoothly and in excellent yields using 
Raney®-nickel catalysts. However, the quick loss of activity, after only a single reaction cycle, makes 
this process unattractive for industrial applications. In this paper, we described the best conditions, 
60 bar H2, 90 °C, ammonia, and 10 wt.% catalyst, for a 92% yield of the methyl-11-aminoundecanoate. 
Moreover, among the tested methodologies for catalyst reactivation ((1) via washing with methanol 
or reaction solvent, (2) via sonication with either a MeOH or NaOH solution at a frequency of 120 
kHz and input power of 100 W or 200 W, and (3) under a hydrogen atmosphere at either 30 or 60 bar 
and at 150 or 200 °C, respectively), only the latter catalyst reactivation method with hydrogen proved 
to be efficient. The in-pot catalyst reactivation under a hydrogen atmosphere and under pilot 
conditions (150 °C, 30 bar) was described. Some promising results were also obtained by reactivation 
under ultrasound by catalyst dispersion in 0.05 N NaOH and sonication at 120 kHz (100 W input 
power). Catalyst activity was recovered by 22 points of yield of methyl-11-aminoundecanoate in 
comparison with ultrasonic mechanical reactivation in this case. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Mass 
spectrum of methyl-undecanoate at 6 min retention time, Figure S2: Mass spectrum of methyl-11-
aminoundecanoate (AE11) dimer at 25.95 min retention time. 
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