

Sustainable processing of Europe's low-grade sulphidic and lateritic nickel/cobalt ores and tailings into battery-grade metals (ENICON)

D6.1

Report on identified projects for clustering activities

Public Deliverable

Authors:

Anna Kritikaki, Technical University of Crete (TUC) Lefteris Doitsidis, TUC Konstantinos Komnitsas, TUC (reviewer)

30-09-2022

Deliverable Number	D6.1
Deliverable Name	Report on identified projects for clustering activities
Due Date of Deliverable	30-09-2022
Actual Submission Date	30-09-2022
Deliverable Lead Partner	Technical University of Crete
Dissemination Level	Public
Public Summary enclosed	No
Work Package	WP6 - Clustering with other EU projects
No of Pages	55
Keywords	Database, clustering, Ni, Co, batteries, laterites, sulphides, ENICON
In bibliography, this report should be cited as follows:	A. Kritikaki, L. Doitsidis, K. Komnitsas, "Report on identified projects for clustering activities," Deliverable 6.1, ENICON project (Sustainable processing of Europe's low-grade sulphidic and lateritic nickel/cobalt ores and tailings into battery-grade metals), 2022, https://eniconhorizon.eu/.

EXECUTIVE SUMMARY

The cobalt (Co) and nickel (Ni) demand is expected to be about 20 times higher in 2040 than in 2020. Europe plays only a minor role in the global Ni/Co supply chains, which are concentrated in the DRC, Indonesia and China. Thus, a serious problem exists in securing a reliable, affordable and sustainable supply of battery-grade Ni/Co, which is vital for Europe's aims to be climate-neutral by 2050. In view of a "domestic and foreign sourcing" procurement model, ENICON exploits the potential of (low-grade) Ni/Co resources within Europe – i.e. sulphidic Ni/Co ores and derived Ni/Co-bearing pyrite and silicate tailings, and limonitic/saprolitic laterite Ni(/Co) ores – while improving and developing the Ni/Co-refining capacity that can process imported ores, concentrates and intermediates. ENICON comprises both major improvements to existing Ni/Co metallurgical unit operations in Europe as well as the development of a new HCI-based route for both Ni/Co sulphide concentrates and laterites. ENICON's HCI-route dispenses with the old-school hydro-approach of continuously precipitating and re-dissolving metals that requires lots of chemicals and creates problematic waste streams.

The HCl-based route can be extended to the downstream processing of FeNi (Class-II Ni) obtained from laterites; mixed (Ni/Co) Sulphide/Hydroxide Precipitate (MSP/MHP) from the bioleaching of Co-rich pyrite tailings; and Ni/Co-containing silicate tailings. ENICON targets a "forensic geometallurgy" protocol, making it possible to identify and mitigate the mineralogical and textural reasons for processing losses along existing and new flowsheets. To make the transition to (near) zero-waste processing and to further reduce CO₂-footprints, ENICON develops enhanced mineral matrix valorisation processes. The outputs from ENICON's group of European Ni/Co mining, processing and refining companies will all be benchmarked in terms of positive environmental and techno-economic impacts against current methods.

WP6 "Clustering with other EU projects" aims to cluster ENICON with other on-going Horizon Europe projects of the same "HORIZON-CL5-2021-D2-01-01: Sustainable processing, refining and recycling of raw materials (Batteries Partnership)" and related calls of the Destination "Climate sciences and responses for the transformation towards climate neutrality" as well as ongoing H2020 projects on next generation batteries towards Building a Low-Carbon, Climate Resilient Future (call H2020-BAT-2019) and contributing to the objectives of The European Technology and Innovation Platform (ETIP) Batteries Europe and the European Raw Materials Alliance. ENICON will also contact Nickel and Cobalt Institutes. This should allow to maximise the generated added value at EU level by reaching a much broader group of stakeholders.

D6.1 aims to identify projects suitable for clustering activities and provide a comprehensive overview as a first step towards coordinating the efforts at European level in this highly innovative scientific field and maximizing ENICON's impact.

This deliverable will be updated every 6 months in order to include new projects, assess the results achieved so far and plan in the best possible way future activities within WP6. The outputs of this deliverable will be used during the implementation of Tasks 6.2 "Contribution to clustering workshops and activities" and 6.3 "Capacity-building seminars" as well as during disseminating and communicating ENICON's results.

Table of Contents

1	Introduction	6
2	Methodology	7
3	Relevant project data	8
4	Future activities	10
5	Conclusions	10
Anı	nex	12
Det	tailed Project List	13

1 Introduction

The transition to a climate-neutral society by 2050 is both a critical challenge and an opportunity to build a better future for all. This objective is at the heart of the European Green Deal and in line with the EU's commitment to global climate action under the Paris Agreement. We are already beginning to see evidence for the global energy system's divergence from being fuel-intensive to mineral/metal-intensive. The resulting demand for nickel (Ni) and cobalt (Co), which are essential for (most) lithium-ion batteries (LIBs), is set to rise at an unprecedented rate. In its report *The Role of Critical Minerals in Clean Energy Transitions*, the International Energy Agency (IEA) predicted that the demand for Ni will increase 21 times and that for Co 19 times, within the next 20 years. New mining projects can take decades to come online, meaning that if no action is taken, we will almost certainly see demand outstripping supply. What makes matters worse for Europe is that the Ni/Co mining/processing/refining value chains are concentrated in the Democratic Republic of Congo (Co mining), Indonesia (Ni mining and refining based on High- Pressure Acid Leaching (HPAL)), and China, whose role is rapidly growing.

As Europe has little involvement in global supply chains, we face a major challenge to ensure reliable, affordable and sustainable supplies (*i.e.*, Class-I Ni: > 99.8 wt% Ni (synthesised into battery-grade NiSO₄) and battery-grade Co (CoSO₄)). In a recent Roskill/JRC report, a "domestic and foreign sourcing" procurement model is promoted. This implies that Europe mobilises its forces to (re)mine, recover and ultra-refine Ni and Co from its existing domestic primary and secondary resources, while at the same time uses its expanding refining capacity to import and process Ni/Co ores, concentrates and intermediates from outside of Europe. This is the core of the ENICON's approach.

ENICON exploits the potential of (low-grade) Ni/Co resources within Europe – i.e. sulphidic Ni/Co ores and derived Ni/Co-bearing pyrite and silicate tailings, and limonitic/saprolitic laterite Ni(/Co) ores while improving and developing the Ni/Co-refining capacity that can process imported ores, concentrates and intermediates. ENICON comprises both major improvements to existing Ni/Co metallurgical unit operations in Europe as well as the development of a new HCI-based route for both Ni/Co sulphide concentrates and laterites. ENICON's HCI-route dispenses with the old-school hydroapproach of continuously precipitating and re-dissolving metals that requires lots of chemicals and creates problematic waste streams. The HCI-based route can be extended to the downstream processing of FeNi (Class-II Ni) obtained from laterites; Mixed (Ni/Co) Sulphide/Hydroxide Precipitate (MSP/MHP) from the bioleaching of Co-rich pyrite tailings; and Ni/Co-containing silicate tailings. ENICON targets a "forensic geometallurgy" protocol, making it possible to identify and mitigate the mineralogical and textural reasons for processing losses along existing and new flowsheets. To make the transition to (near) zero-waste processing and to further reduce CO₂-footprints, ENICON develops enhanced mineral-matrix valorisation processes. The outputs from ENICON's group of European Ni/Co mining, processing and refining companies will all be benchmarked in terms of positive environmental and techno-economic impacts against current methods. A graphical abstract of the ENICON's approach is presented in Figure 1.

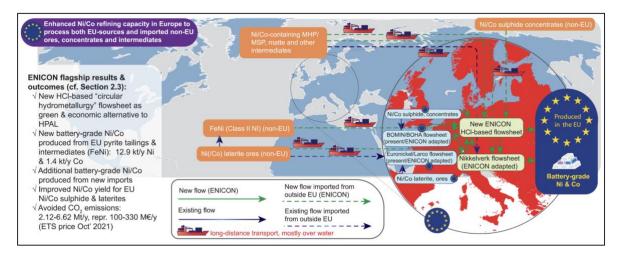


Figure 1. Graphical abstract of the ENICON's approach

A key issue is the identification of similar approaches followed by the research community and the adoption of the proposed methodologies by the industry. EU has heavily invested through different funding schemes, towards developing technologies related to batteries in general and processing ores into battery grade-metals, in particular.

This deliverable D6.1 is the first version of the report on identified projects suitable for clustering activities. Although this deliverable is due by M4, we plan on setting it up as a living document, to provide the ENICON partners a reference point in which the current research efforts will be constantly updated at European level.

The scope of this deliverable is to provide a comprehensive overview of other relevant projects, as a first step towards coordinating the efforts at EU level. The main outputs of this deliverable will be used to identify potential consortia which are suitable for clustering activities (Task 6.2). At the same time, D6.1 will be used in the context of Tasks 7.2-7.3 to enhance the efforts for disseminating and communicating ENICON's intellectual outputs and technological achievements.

2 Methodology

For the creation of the relevant projects' database an exhaustive search was performed. All the identified projects and their related data were recorded in a concise and systematic manner. In Figure 2, the structure of the table which contains the related data is presented. Every project is assigned a unique ID (P**x**, **x** corresponds to the project's ascending numbering), as an index for proper referencing. The title of the project along with the acronym and the link to the project's website are placed at the very top of the table. For each project the following information is recorded:

- i) The call in which the proposal was submitted, along with the related link.
- ii) The main contact person, which may be used as a reference for dissemination and clustering purposes.
- iii) A short description of the project, as it is presented in its respective website.
- iv) The main objectives of the project.
- v) Starting and ending date.

	Project's	Title	Project's acronym
Project's ID-	P2 Lithium-ion battery with silicon	anode, nickel-rich cathode and in- SeN	
Related call	cell sensor for electric vehicles		Link to Project's website
	Call: Research and innovation for advan	ced Li-ion cells (generation 3b) (<u>link)</u>	
(as presented in EU's website)			Contract
	Dr. Ruben Kühnel, project leader, ruben		Contact
	Dr. Stephan Fahlbusch, stephan.fahlbus		person
	Start Date:1/2/20	End date:31/1/24	Starting &
Short Description		eries are the most popular power so	Ending data
of the project		inge and enabling fast charging are key for	
		nded SeNSE project aims to create next-ge mposite anode and a nickel-rich NMC ca	
		The new battery will also provide a batt	
		ors to enable faster charging, improved s	
	recyclability, and reduced production co		
		at enabling next generation lithium-ion	batteries with a
		a nickel-rich NMC cathode to reach 75	
	stability is the key challenge for the add	ption of this cell chemistry. The objective	is to reach 2000
	deep cycles by (i) reducing the surface r	eactivity of the active materials by a com	bination of novel
	film-forming electrolyte additives and	active materials coatings, (ii) compensation	ating irreversible Short Description
	lithium losses during the first cycles en	ploying pre-lithiated silicon and providir	g an on-demand of the project's
		e, (iii) identifying and controlling critical cy	cing parameters
		Adaptive fast charging protocols will be in	
		dynamic in-cell sensor data and by imple	-
		electrode level. To improve the sustainabi	
		nt of the critical raw materials cobalt and	
		coatings, aqueous slurry processing will	
		red and energy density improved by the	
		ffering enhanced adhesion. The feasibility ect to the call targets will be demonstrate	
		ule. Scalability to the gigawatt scale and c	
		pects of recycling and second-life use, wil	
		Northvolt, which currently undertakes	
		ean cell manufacturing plant at scale. The	
		field, patent applications are the p	
	dissemination of technology developed		16

Figure 2. Sample of the projects database

3 Relevant project data

ENICON is one of the three projects, that were approved in the context of the "HORIZON-CL5-2021-D2-01-01: Sustainable processing, refining and recycling of raw materials Batteries Partnership)" call. ENICON differs significantly from the other two approved projects of the same call, namely LICORNE (P1) and RELIEF (P2), since *it exploits the potential of (low-grade) Ni/Co resources within Europe while improving and developing the Ni/Co-refining capacity that can process imported ores, concentrates and intermediates*. LiCORNE aims to increase European Li processing and refining capacity for producing battery-grade chemicals from ores, brines, tailings and off specification battery cathode materials, while RELIEF proposes an integrated recycling facility for Li from secondary raw material sources with continuous processing to produce battery materials. Li wastes will be reduced by more than 70%, which will instead be recycled into high value battery-grade material.

Based on the intensive search carried out a total of 43 EU projects related, to a lesser or higher extent, to ENICON's activities have been identified. Most of the projects (27/43) are focusing their research activities to Li related issues, either as the main component for the proposed systems, in order produce low cost, fast charging batteries, or to investigate an appropriate manufacturing process to produce an environmentally friendly solid-state battery, with high energy capacity and high recycling efficiency.

A smaller number of projects (6/43) aimed at the selection of new prospective materials for the manufacturing process. These involve, high-capacity anodes coupled with cobalt free cathode with a polymer electrolyte separator (P14), Na-Ion cells (P16), electrolytes from lignin (P19), copper redox flow batteries (RFB) (P20), organic redox flow battery system, based on water-soluble organic electrolytes (P21), and RFB from H₂-Br₂ (P22).

As far as the application area is concerned (Figure 3), a large number of projects is focusing on transportation issues, mainly in electric vehicles (15/43) and aeronautical or shipping industry (5/43). Another large share of the projects (16/43) is dealing with metal processing technologies, mainly pertinent for batteries without aiming at a specific application.

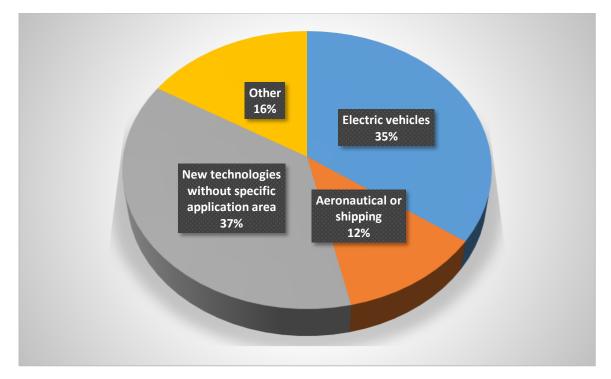


Figure 3. Projects per application area

In addition, ENICON will contact both Nickel and Cobalt Institutes.

The Nickel Institute (NI), <u>https://nickelinstitute.org/en/</u>, is the global association of leading primary nickel producers and its mission is to promote and support the proper use of nickel in appropriate applications.

The NI grows and supports markets for new and existing nickel applications including stainless steel, and promotes sound science, risk management, and socio-economic benefit as the basis for public policy and regulation. Through its science division NiPERA Inc., it also undertakes leading-edge scientific research relevant to human health and the environment. The NI is the centre of excellence for information on nickel and nickel-containing materials and has offices in Asia, Europe and North America.

On the other hand, the Cobalt Institute (CI), <u>https://www.cobaltinstitute.org/</u>, is a trade association composed of producers, users, recyclers, and traders of cobalt. It promotes the sustainable and responsible production and use of cobalt in all its forms.

Through public policy, regulatory, scientific, responsible sourcing and sustainability engagement the Institute strives to:

- Protect and grow the market for cobalt and compounds by promoting a proportionate, holistic and appropriate legislative and regulatory environment where the contribution of the entire value chain to societal goals is recognized;
- Act as the Global center of knowledge on Cobalt; and

- Enhance the reputation of the cobalt industry as a responsible sector with deep expertise in all relevant aspects of product stewardship.

ENICON *differs significantly from the current research efforts at European level*, since it targets a double-sided "realistic innovation" approach, while at the same time making scientific advances in Ni/Co mining, metal recovery, ultra-refining and mineral- matrix valorisation. Compared to existing EU-based flowsheets for Ni/Co mining, recovery/refining processes, ENICON will enhance the existing unit processes and will add complementary unit processes.

Overall, it aims at improving the European Ni/Co refining capacity by allowing to process Europe's lowgrade Ni/Co sulphides & Ni/Co-containing tailings) & Ni(/Co) laterites. It will also develop a new HCIbased Ni/Co route which will not be a stand-alone process but it will act as a complementary process to upgrade FeNi into battery-grade Ni, while recovering Co embedded in the FeNi, or it can be connected to existing SX operations.

Finally, ENICON will have significant environmental impact by reducing the carbon footprint of the pyro-processing of Ni/Co-sulphide concentrates and the associated Ni/Co losses to the fayalitic slag during smelting & converting with the use of green hydrogen as a reductant.

4 Future activities

Within the next few months, the following activities will be discussed, agreed and planned:

- the contact persons of each identified project will be emailed; the ENICON project will be briefly presented and their interest for exchange of information will be recorded
- the projects with the highest potential for clustering will be shortlisted and the contact persons will be contacted again; if needed, e-meetings will be carried out to elucidate any pending issues
- clustering topics will be discussed and agreed with all ENICON partners
- the periods for organizing the workshops will be discussed; sufficient time will be given in order to organize them in the best possible way in order to maximize impact
- capacity building seminars will be discussed (after M9)

5 Conclusions

In the deliverable D6.1 all projects suitable for clustering activities were identified as a first step towards coordinating the efforts at European level in this highly innovative scientific field and maximizing ENICON's impact.

The identified projects derived from the same "HORIZON-CL5-2021-D2-01-01: Sustainable processing, refining and recycling of raw materials (Batteries Partnership)" and related calls of the Destination "Climate sciences and responses for the transformation towards climate neutrality"; they also included ongoing H2020 projects on next generation batteries towards Building a Low-Carbon, Climate Resilient Future (call H2020-BAT-2019) and contributing to the objectives of The European Technology and Innovation Platform (ETIP) Batteries Europe and the European Raw Materials Alliance.

The Nickel and Cobalt Institutes will be also contacted to establish common grounds for future cooperation.

This deliverable will be updated every 6 months in order to include new projects, assess the results achieved so far and plan future activities within WP6 in the best possible way. The next steps include

exchange of information with the contact persons of the other identified projects, shortlisting of the projects with the highest potential for clustering, establishment of the cluster, identification of clustering topics and first discussions on the workshops and capacity building seminars which will be organized at later stages.

ENICON coordinator, the partners and the project officer will be continuously informed about all activities, results and future plans of WP6.

Annex

Detailed Project List

P1 Lithium recovery and battery production from European reso	-	LICORNE	web		
Call: Cross-sectoral solutions for the clin	nate transition (HC	RIZON-CL5-2021-	D2-01) (<u>link)</u>		
Contact person: UNDACION TECNALIA R	ESEARCH & INNOV	ATION – TECNALIA	A <u>(link)</u>		
Start Date: 1/10/22		: 30/9/26			
Project Description: Europe imports mo		•	•		
lithium (Li), nickel (Ni), cobalt (Co) and m	0	·	•		
context, the EU-funded LiCORNE projec					
aims to increase European Li process					
chemicals from ores, brines, tailings and	-	-			
chain encompasses five large primary		-			
equivalent (LCE), of which 2.7 million t	onnes are located	in Europe. The va	alue chain includes a		
cathode manufacturer able to reuse valu		•			
material. LiCORNE will investigate diffe	erent ground-break	king technologies	in Li processing and		
recovery.					
Objectives: LiCORNE aims to establish the	e first-ever Li supply	y chain in Europe. ⁻	The goal is to increase		
the European Li processing and refining	capacity for produc	cing battery-grade	chemicals from ores,		
brines, tailings and off-specification batt	ery cathode materi	als. This supply ch	ain encompasses five		
large primary resource owners (including	one of the world le	eader in Li product	ion) having resources		
of ~7.8 Mt lithium carbonate equivalent	(LCE), of which 2.7	Mt are located in E	Europe. The European		
primary resources that are considered	in LiCORNE would	l be enough to su	upply ~3000 GWh of		
batteries (i.e., ~10 years to the expected	d 300 GWh/year p	roduction capacity	y in Europe by 2030).		
Additionally, the value chain includes a ca	athode manufactu	rer who will be abl	e to reuse valuable Li,		
Co and Ni that will be recycled from was	ste cathode materi	al, and one produ	cer and distributor of		
battery-grade Li-chemicals. LiCORNE will	investigate 14 diffe	rent ground-break	king technologies that		
have been selected for their potential t	o operate at low C	APEX and OPEX, I	ow carbon footprint,		
flexibility and industrial scalability. These	e technologies are	led by 8 top R&D	centers in Europe to		
tackle the main bottlenecks in Li proce	essing and recover	y. During 2.5 year	rs, R&D partners will		
investigate those technologies and bring their TRL from 2 to 4. After this phase, and guided by LCA					
and LCCA, the most promising technologies will be selected for upscaling to TRL5. During this phase					
a prototype system will be constructed and demonstrated to produce \sim 1 kg of battery-grade Li-					
chemicals (i.e., LiOH·H ₂ O, Li ₂ CO ₃ or Li-metal) from ores, brines, tailings and waste cathode material,					
with the recycling of Co and Ni from the	latter. Results will	be communicated	l and disseminated to		
a wide range of stakeholders and a first	business model fo	r a full and optimize	zed Li supply chain in		
Europe will be established based on the	results of the proje	ct and cost of Li p	roduced.		

P2	Recycling	of Li	ithium	from	Seconda	ry Raw	RELIEF	web	
	Materials a	and Fu	urther						
Call: Cro	oss-sectoral	soluti	ions for	the cli	mate trans	ition (HC	ORIZON-CL5-20	021-D2-01) (<u>link)</u>	
Contact	person: AV	ESTA E	BATTER	Y & EN	ERGY ENG				
	ite: Not avai						: Not available		
-	-							ng Li from battery scrap	-
while ha	ardly much f	ocus a	and tec	hnologi	ical develo	pment is	going toward	s other Li sources. Henc	ce
the aim	is to recove	er Li fro	om pot	ential s	econdary	sources,	in order to rec	luce unrecovered Li froi	m
its waste	e generatior	۱, whic	ch is est	timated	l to be app	orox. 27.3	3% of the curi	rent global Li production	n.
RELiEF p	proposes an	integ	rated r	ecyclin	g facility f	or Li from	n secondary ra	w material sources wit	th
continu	ous process	ing to	produc	e batte	ery materia	als. Li wa	stes will be rec	luced by more than 70%	%,
which w	/ill instead b	e recy	cled in	to high	value batt	ery-grad	e material. The	e results of the integrate	ed
and con	tinuous proo	cess up	p to bat	tery pr	ecursor re	covery wi	ll be demonstr	ated at TRL 5 and batter	ry
active m	naterial close	ed-loo	p proce	ess will	be demon	strated a	t TRL4 with a 🛛	1.5 – 2.5 kg/week outpu	ut
of batte	ry active ma	terials	s and a r	new bus	siness moo	lel will be	developed for	the materials acquisitio	n
and pro	cessing, taki	ing int	to acco	unt env	vironmenta	al and so	cial sustainabil	ity. The expected result	ts
will cont	tribute to d	ecreas	sing the	e deper	ndency of	the EU o	n imported ba	ttery chemicals and rav	w
materia	ls. RELiEF w	ill gre	eatly str	engthe	en the EU'	s compe	titiveness in tl	ne battery storage valu	Je
chain. Tl	he RELiEF co	onsorti	ium con	sists of	12 partne	rs, six of v	which are SME	s (ABEE, EXT, EURICE, IS	Т,
PEG, TC), four are no	on-pro	ofit RTO	s (IMNF	R, INEGI, Z	SW, NOV	A) and further	two are universities (LU ⁻	Т,
ULB) and	ULB) and one associated industrial partner (LANX). Thus, it has strong industry involvement, entirely								
in the form of innovative SMEs covering the technological and also the impact maximization related									
aspects	aspects of the project; a perfect combination of basic research methodologies, chemical process								
and ana	and analysis capabilities, technology development in an industrial environment and strong ties to								
the recy	cling and ba	attery	industry	y and p	olicymakir	g entitie	s inside the EU		
Objectiv	/es : New pro	oject -	no info	rmatio	n available				

P3	First of a kind commercial Compact sys	stem for	CROCODILE	web	
	the efficient Recovery Of CObalt Design	ned with			
	novel Integrated LEading technologies				
Call: Gr	Call: Greening the Economy (H2020-SC5-2016-2017) (<u>link)</u>				
Contact	Contact person: Dr. Amal Siriwardana (link)				
Start Date: 1/6/18 End date: 30/11/22					

Project Description: The CROCODILE project aims to drastically reduce the supply risk of cobalt for the European industries by increasing the efficiency of recovery processes for cobalt (and other relevant materials). It strives to do so with lower energy costs and environmental impacts, providing solutions with low capital investment costs. And finally, it aims to maximize the exploitation of 'local' waste. Cobalt can be leached from primary resources using bioleaching which is the extraction of metals from ores using living organisms; the process will be optimized and upscaled using a 100 L bioreactor. In parallel, secondary waste streams rich in cobalt will be identified and pre-concentrated by using novel advanced technologies that are capable of real-time high-speed classification. Different Co-bearing sources (like lithium batteries, electric vehicle-batteries and cobalt catalysts) are processed into a high quality cobalt concentrate by applying a **unique** combination of advanced mechanical, wet mechanical and pyro-metallurgical processes. Along with cobalt, other valuable materials like lithium and graphite are extracted too. Finally, the high quality cobalt concentrates (from the primary and the secondary sources) are further processed using solvent extraction and electro-winning which allows a selective extraction of cobalt. The CROCODILE project intends to optimize all the above-mentioned processes and combine them in a compact commercial mobile system with a production capacity of up to 200 kg of cobalt metal per day. Finally, CROCODILE foresees an active stakeholder engagement bringing together investors, industry, policy makers and civil society. Together with the CROCODILE consortium, these stakeholders scrutinize the best possible practices so that an environmental and sociallyresponsible business model is developed and a future replication of the project's concept can be ensured.

Objectives: The CROCODILE project will showcase innovative metallurgical systems based on advanced pyro-, hydro-, bio-, iono- and electrometallurgical technologies for the recovery of cobalt and the production of cobalt metal and upstream products from a wide variety of secondary and primary European resources. CROCODILE will demonstrate the synergetic approaches and the integration of the innovative metallurgical systems within existing recovery processes of cobalt from primary and secondary sources at different locations in Europe, to enhance their efficiency, improve their economic and environmental values, and will provide a zero-waste strategy for important waste streams rich in cobalt such as batteries. Additionally, CROCODILE will produce a first of a kind economically and environmentally viable mobile commercial metallurgical system based on advanced hydrometallurgical and electrochemical technologies able to produce cobalt metal from black mass containing cobalt from different sources of waste streams such as spent batteries and catalysts. The new established value chain in this project will bring together for the first time major players who have the potential of supplying 10,000 ton of cobalt annually in the mid-term range from European resources, corresponding to about 65% of the current overall EU industrial demand. Therefore, the project will reduce drastically the very high supply risk of cobalt for Europe, provide SMEs with novel business opportunities, and consolidate the business of large refineries with economically and environmentally friendly technologies and decouple their business from currently unstable supply of feedstocks.

P4	Near-zero-waste recycling of low-grade sulphidic	NEMO	web		
	mining waste for critical-metal, mineral and				
	construction raw-material production in a				
	circular economy				
Call: Greening the Economy (H2020-SC5-2016-2017) (<u>link)</u>					
Contac	Contact person: Mika Paajanen Mika Paajanen@vtt.fi				

Start Date: 1/5/18 End date: 30/11/22

Project Description: The NEMO project "Near-zero-waste recycling of low-grade sulphidic mining waste for critical-metal, mineral and construction raw-material production in a circular economy" is a EU H2020 Innovation Action project (IA, call SC5-14b). Using a "4 PILOTS – 2 case-studies" concept, NEMO develops, demonstrates and exploits new ways to valorise sulphidic mining waste.

Objectives: With an estimated volume of 600 Mtonne/y and a historic stockpile of 28,000 Mtonne, sulphidic mining waste from the production of Cu, Pb, Zn and Ni, represents the largest volume of extractive waste in Europe. When poorly managed, these "tailings" may cause major environmental problems such as acid mine drainage. In 2016 EIP Raw Materials launched a "call to arms" to transform the "extractive-waste problem" into a "resource-recovery opportunity", as "tailings" still contain valuable & critical metals. Using a "4 PILOTS - 2 case-studies" concept NEMO develops, demonstrates and exploits, therefore, new ways to valorise sulphidic tailings. The 2 cases are the Sotkamo Ni-Cu-Zn-REE/Sc mine in Finland and the Las Cruces Cu-mine in Spain; the 4 PILOTS are located at key points in the near-zero-waste flowsheet, encompassing the recovery of valuable & critical metals, the safe concentration of hazardous elements, the removal of sulphur as sulphate salts, while using the residual mineral fraction in cement, concrete and construction products. NEMO has established an interdisciplinary consortium, including 8 industrial partners (2 mining, 4 engineering, 1 machine manufacturing & 1 construction material company), 4 research institutes, 2 universities and 1 civil society group. NEMO's near-zero-waste technology will provide the EU with both direct and long-term, indirect advantages. The former range from new resources (e.g. base metals: Cu, Zn, Ni, Pb; critical metals: Sc, Nd, Y, Sb; SCM and aggregates etc.), CO₂ savings from metal recovery and the replacement of Ordinary Portland Cement), new job creation (> 150 FTEs), new revenues (> 200 M \notin /y) while the latter represent the multiplication of the former benefits (cf. 28,000 Mtonne of these tailings), while eradicating acid-mine drainage and other environmental issues, and ensuring an enhanced dialogue (framework) between industry and civil society, to obtain and maintain the License to Operate mines in EU.

P5	Delivering the 3b generation of LNMO cell	3beLiEVe	<u>web</u>		
	2025 and beyond				
Call:	Research and innovation for advanced Li-ion	cells (generation 3b) (<u>lir</u>	<u>nk)</u>		
Cont	act person: AIT Austrian Institute of Technol	ogy GmbH, Center for Lo	w-Emission Trai	nsport,	
Elect	ric Drive Technologies, office@ait.ac.at				
Start	: Date: 1/1/20	End date:30/6/23			
Proje	ect Description: The development of better r	materials for use in recha	argeable batteri	es is vital	
for t	he future of the electric vehicle market. On	e of these materials is li	thium nickel ma	anganese	
oxide	oxide (LNMO), a cobalt-free cathode material that's a cost-effective alternative to current lithium-			t lithium-	
ion (ion (Li-ion) battery materials. Using LNMO, the EU-funded 3beLiEVe project aims to produce the				
next	generation of Li-ion rechargeable batteries	for electric vehicles in	2025 and beyor	nd . Along	

with the next-gen battery cells, the project will also develop and integrate internal and external sensors for the cell. The data obtained from these sensors will provide a more timely and accurate view of the state of the cell and will be used to implement smart operating strategies that extend the life of the cell and improve its safety. The smart battery management system will process this data and manage an adaptive liquid cooling system. Manufacturing, second life and recycling aspects are also considered. The project's innovations will play a role in strengthening the European battery and automotive industry.

Objectives: 3beLiEVe aims at delivering the 3b generation of LNMO cells for the electrified vehicles market of 2025 and beyond. The project addresses the full scope of the LC-BAT-5-2019 call by delivering: 3b generation batteries with LNMO cathodes, LiFSI electrolyte, and a 10-20 wt.% Si-C anode in a cell architecture capable of 750 Wh/I, 300 Wh/kg, 1.4 kW/kg, and 2,000+ deep cycles, of which 10% at 3C+; a portfolio of internal and external sensors (22 sensors per module) and an adaptive liquid cooling system managed by a smart BMS with advanced diagnostic and operational functions; cradle to cradle approach, including cell/module/pack green manufacturing processes (gigafactory level), optical equipment for inline quality inspection, 1st and 2nd life performance and recyclability demonstration, achieving 90 €/kWh life cycle cost.

The project will deliver 250 cells of generation 3b in total and two demonstrator battery packs of 88 cells and 12 kWh capacity each at TRL 6 / MRL 8. These aim at demonstrating the 3beLiEVe technology performance for applications in light duty (i.e. passenger cars, freight vehicles) and commercial vehicles (i.e. city buses and trucks) in fully electric/plug-in hybrid (BEV/PHEV) configurations. 3beLiEVe technology is free of critical raw materials (cobalt and natural graphite), scalable and sustainable, aiming at 12.7 GWh production by 2025 and 33.7 GWh in 2030, for a market ranging from 1.1 to 2.5 billion €/year, i.e. 7% of the global manufacturing capacity. All the technological domains and innovations addressed in 3beLiEVe are essential for strengthening the position of the European battery and automotive industry in the future market of xEVs.

P6	Lithium-ion battery with silicon anode, ni	SeNSE	<u>web</u>		
	cell sensor for electric vehicles				
Call:	Call: Research and innovation for advanced Li-ion cells (generation 3b) (<i>link</i>)				
Cont	act person: Dr. Corsin Battaglia, coordinator,	econversion@empa.ch			
Dr. R	Dr. Ruben Kühnel, project leader, <u>ruben-simon.kuehnel@empa.ch</u>				
Dr. St	Dr. Stephan Fahlbusch, <u>stephan.fahlbusch@empa.ch</u>				
Start	Date:1/2/20	End date:31/1/24			

Project Description: Lithium-ion batteries are the most popular power sources for future transportation. Extending the driving range and enabling fast charging are key for promoting the adoption of electric vehicles. The EU-funded SeNSE project aims to create next-generation lithium-ion batteries with a silicon-graphite composite anode and a nickel-rich NMC cathode to reach a volumetric energy density of 750 Wh/I. The new battery will also provide a battery management system couped to dynamic in-cell sensors to enable faster charging, improved sustainability and recyclability, and reduced production costs.

Objectives: The SeNSE proposal aims at enabling next generation lithium-ion batteries with a silicon-graphite composite anode and a nickel-rich NMC cathode to reach 750 Wh/L. Cycling stability is the key challenge for the adoption of this cell chemistry. The objective is to reach 2000 deep cycles by (i) reducing the surface reactivity of the active materials by a combination of novel film-forming electrolyte additives and active materials coatings, (ii) compensating irreversible lithium losses during the first cycles employing pre-lithiated silicon and providing an on-demand reservoir of excess lithium in the cathode, (iii) identifying and controlling critical cycling parameters with data provided from in-cell sensors. Adaptive fast charging protocols will be integrated into the battery management system based on dynamic in-cell sensor data and by implementing thermal management concepts on materials and electrode level. To improve the sustainability of the battery and to lower production cost, the content of the critical raw materials cobalt and natural graphite will be reduced. Enabled by protective coatings, aqueous slurry processing will be developed for the cathode. Costs will be further lowered and energy density improved by the development of thinner textured current collector foils offering enhanced adhesion. The feasibility and scalability of the SeNSE battery technology with respect to the call targets will be demonstrated through 25 Ah pouch cell prototypes and a 1 kWh module. Scalability to the gigawatt scale and cost-effectiveness of the proposed solutions, including aspects of recycling and second-life use, will be continuously monitored via regular briefings led by Northvolt, which currently undertakes one of the most ambitious efforts to establish a European cell manufacturing plant at scale. To strengthen the European IP portfolio in the battery field, patent applications are the preferred way of dissemination of technology developed within SeNSE.

P7	Battery DEsign and manuFACTuring	Optimization through	DEFACTO	<u>web</u>	
	multiphysic modelling				
Call:	Call: Li-ion Cell Materials & Transport Modelling (<u>link)</u>				
Cont	Contact person: CIDETEC Energy, info@defacto-project.eu				
Start	Start Date:1/1/20 End date:30/6/23				

Project Description: Rechargeable lithium-ion batteries (LIBs) power everything from portable electronics to electric cars. Since the first one was launched nearly 30 years ago, they have continued to evolve to support rapid innovation of the products that depend on them. A critical bottleneck in today's LIBs is the cathode material. Cathodes based on nickel-manganese-cobalt (NMC) are among the most promising. These materials could significantly reduce costs and enable longer driving ranges for tomorrow's electric vehicles. **The EU-funded DEFACTO project plans to turbocharge the development of next-generation LIBs for the automotive market with a comprehensive open-source modelling tool**. Using experimental data from two existing NMC cells to optimise algorithms, the platform promises to reduce development time and cost while enhancing performance and durability.

Objectives: The DEFACTO project rationale is to develop a multiphysic and multiscale modelling integrated tool to better understand the material, cell and manufacturing process behaviour, therefore allowing to accelerate cell development and the R&I process. This approach will allow developing new high capacity and high voltage Li-ion cell generation 3b battery. This will increase the understanding of multiscale mechanisms and their interactions, reducing the R&D cell development resources, therefore unlocking an innovation-led cell manufacturing industry in Europe. The validated computational simulations will be a powerful tool to (i) tailor new optimum cell designs, (ii) optimise manufacturing steps of electrode processing and electrolyte filling, and (iii) shape new generation 3b materials.

This work will be based on an iterative exchange process for model development, validation and optimisation using two cell technologies for the automotive market: a commercial NMC622/G cell taken from the product portfolio from one of the DEFACTO partners and last generation prototypes (NMC811/G-Si). Characterisation tests will provide data for model development and validation, and for gaining understanding on ageing mechanisms. Sensitivity analysis will demonstrate model robustness and reduce the number of experiments needed during cell development. The optimization algorithms will enhance cell performance and durability through optimised designs and manufacturing processes. The novel fast-track cell development procedure achieved will be further extended to LMNO/G-Si prototypes. In parallel, the set of individual multiscale and multiphysic models will be compiled in an open-source simulation tool, including mechanical and electrochemical ageing with outstanding accuracy at reasonable computational cost. The project consortium, which covers the whole cell manufacturing value chain, has the required experience to ensure a smooth and high-quality delivery of the outcomes of the project.

P8	Sodium-Zinc molten salt batteries for low-c	ost	SOLSTICE	web	
	stationary storage				
Call: Building a Low-Carbon, Climate Resilient Future: Next-Generation Batteries (H2020-LC-BAT-					
2019-2	020) (<u>link)</u>				
Contac	t person:				
Dr. Nor	bert Weber, Project Coordinator, E-Mail: norbe	.we	<u>eber@hzdr.de</u>		
Dr. Ton	n Weier, Communications, E-Mail: <u>t.weier@hzdr</u>	<u>de</u>			
Susann	Riedel, Project Manager, E-Mail: s.riedel@hzdr.	e			
Start D	ate:1/1/21 End	ate	:30/6/25		
Project	Description: The EU-funded SOLSTICE project	olan	ns to develop two	sodium-zinc molten	
salt bat	tteries operating at high temperatures that co	ld k	be used for station	nary energy storage.	
The firs	t battery will be based on ZEBRA technology,	typ	be of rechargeable	e molten salt battery	
based o	on nickel, sodium and chloride. Instead of nicke	res	searchers will use	cheap and abundant	
zinc as	the positive electrode. In the second all-liquid	bat	ttery, researchers	will apply the same	
chemis	try but will not use a ceramic electrolyte, there	y fu	urther driving dow	n battery costs. Both	
battery	concepts will be brought at a technology reading	ess l	level 5.		
Objecti	ves: SOLSTICE answers the quest for stationary	ener	rgy storage with tw	vo Na-Zn molten salt	
batterie	es, which operate at elevated temperature. The	irst	concept benefits f	from the existing and	
success	ful ZEBRA [®] technology. Replacing their Ni-elec	rod	e by cheap and a	bundant Zn will only	
minima	Ily affect other system parts thereby ensuring fa	t co	mmercialisation. T	he second approach,	
an all-li	quid cell, will apply the same chemistry, but d	bes	not require a cera	amic electrolyte thus	
reducin	g cost further. Both battery concepts shall b	br	ought to TRL5, ar	nd validated by four	
demon	strators, operating in a realistic environmen	at	the end of the	4-year project. The	
demon	strators will be equipped with a self-learning	bati	tery management	system and will be	
accomp	panied by upscaling, system integration and pub	ic a	cceptance studies	. Na-Zn technology is	
excepti	onally performant as it promises similar efficien	y ar	nd depth of discha	rge as Li-ion cells, but	
	e current densities. Featuring molten electrod			•	
	ycled, as operation keeps them warm; several cy				
	an be legitimately expected. Na-Zn storage is pe		-		
salt and Zn, are abundant in the EU, cheap and not harmful. The environmental impact of Zn-mining					
and battery production is expected to be minimal. Finally, recycling is greatly simplified due to the					
large, molten electrodes. The most valuable element, Zn, can simply be recovered as pure metal					
and reused after dismantling the cells. Based on the existing knowledge on ZEBRA® battery					
production, the storage price of Na-Zn batteries is expected to approach 1 cent/kWh/cycle by 2030					
	ing balance-of-plant and recycling cost. Summir				
	-salt battery, is fully sustainable, fulfils all crite	ia c	of the call - and is	even realistic to be	
comme	rcialized by 2030.				

P9	Long LAsting BATtery System	LOLABAT	web		
Call: Bu	ilding a Low-Carbon, Climate Resilient Future: I	lext-Generation Ba	tteries (H2020-LC-BAT-		
2019-20	020) (<u>link)</u>				
Contact	person: CY CERGY PARIS UNIVERSITE (<u>link)</u>				
		late:31/3/24			
-	Description: Energy security, autonomy and su	-			
-	Europe today. There is a growing need to shif				
	ble energy sources. Battery energy storage syste				
	ing intermittent renewable electricity generation	•	-		
	eral advancements in sustainability and compe				
	funded LOLABAT project aims to develop a n				
_	eable nickel-zinc battery. This is envisioned to				
	costs. It will be environmentally friendly, using	abundant, available	raw materials and non-		
	ements and having high recycling potential.				
-	ves : Transition to renewable energy sources (RE				
changes	s, to overcome the energy crisis and to ensure	energy independe	nce between different		
regions	of the world. Battery energy storage system	s (BESS) are currer	ntly seen as important		
	ogical enablers for increasing the absorption		-		
	ements in their performance, cost competitiver		•		
	the complete batteries value chain and life cycl				
	I, over innovative advanced materials to mode				
	nd environmental assessments. LOLABAT's 17 sta				
	chemistry, RNZB (rechargeable NiZn Battery).	•			
	T will have energy and power densities both the				
-	ust after the Lead-acid battery, while profiting f				
	ic elements, high safety, low risk of thermal ru	-			
-	cycling potential. The ambitions (2024 and afte	-			
	cycle life of NiZn (to at least 4000 cycles at 100% DoD be the end of project), development of NiZn				
for grid applications and its preparation for a production in Europe, by increasing its TRL via					
upscaling of capacity, design and integration of BMS and sensors built up in battery packs, testing					
	monstration in stationary energy storage appli				
industrial sites, its preparation for a future industrialization by realization of life cycle and life cycle					
	alyses, recycling studies, assessment of norms, st	-			
	s model and market studies and finally an exter	sive dissemination	and communication of		
the proj	ject results and NiZn technology.				

P10 All Solid-sTate Reliable BATtery for 2025		ASTRABAT	<u>web</u>		
Call: Strongly improved, highly performant and sa	fe all solid state batteri	es for electric ve	hicles		
(<u>link</u>)					
Contact person: Sophie Mailley					
French Alternative Energies and Atomic Energy Co	ommission (CEA) <mark>coordi</mark>	nator@astrabat	<u>.eu</u>		
Start Date:1/1/20	End date:30/6/23				
Project Description: To avoid relying on other cou	intries to meet its energ	gy transition goal	s, Europe		
is faced with the challenge of developing and pro-	ducing competitive lith	ium-ion (Li-ion)	batteries		
While a promising option, Li-ion technology stills	s needs further develo	pment in order	for mass		
production to be economically viable and enviro	onmentally friendly. To	meet this goal	, the EU		
funded ASTRABAT project intends to find optim	mal solid-state cell ma	iterials, compon	ents and		
architecture that can be mass-produced to meet e	electric vehicle market	demands. The p	roject wil		
play a role in strengthening the European batter	y value chain as well a	s collaborations	betweer		
research and technology organizations, SMEs and	industrial partners.				
Objectives: Europe is facing a major challenge to	o develop and produce	a competitive	Li-battery		
product in order to avoid dependency on third cou	untries in its energy tra	nsition models. ⁻	Гhe Li-ior		
cell innovations should meet specific technical and	d economical requireme	ents to sustain th	ne marke		
growth. The all-solid Li-ion technology appears to	be one of the relevant	t options but it s	till has to		
be brought to higher TRL to be economically and	l environmentally friend	dly for a mass pi	oductior		
compatible process. The ASTRABAT project gathe	ers 14 partners, leaders	s in the different	t fields o		
research, development and production, from 8 c	countries. It aims to fir	nd optimal solid-	state cel		
materials, components and architecture that are w	well suited to the dema	nds of the electr	ic vehicle		
market and compatible with mass production.	The project will comp	oly with improve	ed safety		
demands and industrial standards. Five ambitious	objectives were define	d:			
1. Development of materials for a solid hybrid elec	trolyte and electrodes	enabling high en	ergy, higł		
voltage and reliable all-solid-state Li-ion cells					
2. Gen#2D cell design: processing techniques con	mpatible with existing	routes of large	scale cel		
manufacturing (10Ah, Energy type) and validation of a pilot prototype in a relevant industrial					
environment					
3. Development of a 2030s eco-designed generation	on for Power-type and	Energy type all-s	olid-state		
cells in pre-prototype (Gen#3DS and #3DC)					
4. Define an efficient cell architecture to comply w	vith improved safety de	mands			
5. Structuration of the whole value chain of the all	I-solid-state battery, in	cluding eco-desi	gn, end o		
life and recycling					
The project will reinforce the European battery	value chain, strengthe	n collaborations	betweer		
RTOs, SMEs and Industrial partners from materia	ial development to int	egration in vehi	icles. The		
implementation of related work packages, tasks, milestones and risk assessment is considered to					
implementation of related work packages, tasks, milestones and risk assessment is considered to					

	FE LIthium Metal technology	SAFELIMOVE	<u>web</u>
tOwards Vehicle Electrificatio			
Call: Strongly improved, highly perfo	rmant and safe all solid state bat	teries for electric vehicl	es
(<u>link</u>)			
Contact person: Dr. MariaMartinez		<u>energigune.com</u>	
Ms.Leire Olaeta , CIC energiGUNE, <u>lo</u>	laeta@cicenergigune.com		
Start Date:1/1/20	End date:31/12/23	3	
Project Description: Electric vehicles	(EVs) play an important role in t	he bid to meet global go	als on
climate change. Although the marke	t for EV batteries has seen consis	stently high growth rates	s over
the past few years, currently the bat	tery technology is dominated by	players from Asian cour	ntries.
The EU-funded SAFELiMOVE project	t intends to increase Europe's r	epresentation in this m	arket
by gathering key European actors in	n the battery sector, including in	dustrial materials prod	ucers,
battery manucfacturer, R&D centre	s and the automotive industry.	The project aims to dev	elop a
new lithium-metal battery cell tech	nology based on a safe, reliable	and high-performance	solid-
state electrolyte. Its high specific en	ergy (450 Wh/kg), fast charging a	and long cycle life is exp	ected
to extend EV range, helping the tran	sport sector to reduce greenhou:	se gas emissions.	
Objectives : Transport is responsible	for around a quarter of EU gree	enhouse gas (GHG) emis	sions,
and more than two thirds of transp	ort-related GHG emissions are fr	om road transport. Cou	ntries
around the world are betting on EVs	to meet sustainability targets. B	Battery cells are conside	red as
the heart of EVs, and currently EU	OEMs import around 90% of	the battery cells from	Asian
companies. New materials and proce	esses are needed if the EU wants	to catch up with Asian b	attery
manufacturers. SAFELiMOVE will ga	her key European actors in the b	pattery sector, from indu	ustrial
materials producers, to R&D center	s and automotive industry, cove	ring the complete know	ledge
and value chain. SAFELiMOVE will	not only strengthen the R&D ir	the energy and auton	notive
sectors but especially the European	industry in these fields. SAFELiM	OVE project aims to sup	port a
market-driven disruptive technology	change towards high energy de	nsity batteries (450 Wh	/kg or
1200 Wh/L) and improved safety in	a cost-effective manner. SAFELi	MOVE delivers innovati	ons in
five main technology areas: develo	opment of nickel-rich layered o	xide cathode materials	; high
specific capacity, lithium metal a	node materials; advanced hyb	rid ceramic-electrolyte	with
improved ion conductivity at room	temperature; interface adoptior	n for effective Li transpo	ort by
surface modification and/or over-co	atings, and knowhow creation fo	r the development of sc	ale up
production of all-solid-state batterie	s. By higher energy density batter	ies towards 450 Wh/kg,	faster
charging and longer cycle life, SAFELi	MOVE aims to meet future batte	ry requirements for EVs.	Thus,
the range of EVs will be extended	and the electro-mobility and de	carbonization will be fu	urther
pushed forward with impact in clima	te change scenarios.		

P12	Liquid-Processed Solid-State Li-metal Battery: development of	SOLIDIFY	<u>web</u>			
	upscale materials, processes and architectures					
Call: Strongly improved, highly performant and safe all solid state batteries for electric vehicles						
(<u>link</u>)						
Cont	act person: INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM (III	<u>nk</u>)				
Start	Date:1/1/20 End date:31/12/23					
Proje	ct Description: Sustainable batteries with ultra-high performance	and smart functior	nalities			
will p	lay a critical role in powering Europe's transition from fossil fuels	s to renewable en	ergies.			
Conv	entional lithium-ion batteries utilise a liquid electrolyte. Solid-state	lithium-ion batter	ies, or			
lithiu	m-metal solid-state batteries, use a solid electrolyte and lithium me	etal as the battery a	anode.			
These	e are garnering increasing attention for their promise of low cost	t, high performand	e and			
enha	nced safety, yet they are far from achieving commercial viability.	The EU-funded SO	LIDIFY			
proje	ct is developing materials and manufacturing processes to bring the	eir novel liquid-pro	cessed			
solid	state fabrication technology to fruition. It will enable successful	integration of thei	r solid			
nano	composite electrolyte and fabrication of a new generation of	lithium-metal solid	d-state			
batte	ries with Europe leading the charge.					
Obje	Objectives: The SOLiDIFY project proposes a unique manufacturing process and solid-electrolyte					
mate	material to fabricate Lithium-metal solid-state batteries – known as Gen. 4b on the EU battery					
road	nap. The concept is based on a solid nanocomposite electrolyte or	nano-SCE. It is mad	le by a			
sol-g	el reaction which is used advantageously for a liquid-to-solid approac	h in the fabrication	of the			

composite cathode and the solid-electrolyte separator. The general strategy to reach the target energy density of 1200Wh/L (400Wh/kg) in 20 minutes charging time is: (1) enabling the integration of high-energy NMC active materials and (2) development of new electrode architectures for high mass loading and enabled by the liquid-to-solid approach. An added imposed challenge is a waterbased cell assembly process. To this end, suitable protection of the high-energy NMC powder with ALD thin-film coatings is pursued. Finally, thin lithium foils with protective artificial interphase coatings will be developed for lamination on the nano-SCE separator. The main goal of SOLiDIFY is to bring the liquid-processed solid-state cell fabrication concept from demonstration in the lab (TRL3) to demonstration of prototypes in pilot line (TRL6), with upscaling of the concept both towards (1) the development of manufacturable materials and processes and (2) the discovery of full cell assembly schemes with ultimate demonstration of 1Ah pouch cells. The material research will focus on (1) solutions enabling the upscaling process and manufacturability and (2) further improvement of cell integration steps to enhance performance. Manufacturable parameters such cost, environmental impact and recycling will also be handled. The larger scope of the SOLiDIFY project entails the development of a novel and potentially European-lead solid-state battery technology with fully covered EU value chain.

P13	Solid state sUlfide Based LI-MEtal batteries	SUBLIME	<u>web</u>		
Call:	Call: Strongly improved, highly performant and safe all solid state batteries for electric vehicles				
(<u>link</u>)					
Cont	Contact person: Dr. Jens Ewald, FEV EUROPE GMBH, coordination@sublime-project.eu				
Start	Start Date:1/5/20 End date:30/4/24				
Project Description: With transport responsible for about a quarter of the world's greenhouse					
emis	sions, the development of electric vehicles (EVs) is deemed crucial. The	e EU-funded SU	BLIME	

project aims to significantly increase the use of EVs by taking on the technical challenges presented by the consumer needs. These are mainly associated with reducing EV costs while increasing their ability to travel greater distances and allowing for fast charging. **The SUBLIME project will help develop a complete value chain for new sulfide electrolyte-based solid-state battery cells with high capacity and high voltage stability**.

Objectives: Wide global deployment of electric vehicles (EVs) is necessary to reduce transport related emissions, as transport is responsible for around a guarter of EU greenhouse gas (GHG) emissions, and more than two thirds of transport-related GHG emissions are from road transport. SUBLIME's overall aim is to significantly increase EV adoption by taking on the technical challenges that are presented by the consumer needs - especially the reduction in costs of EVs, increasing their capabilities regarding long distance traveling and fast charging. SUBLIME concept entails development of a complete value chain, from requirements to testing, for new sulfide electrolyte based solid-state battery cells with high capacity and high voltage stability (scalable to mass production) to reach gravimetric energy density of >450 Wh/kg and volumetric Energy density of >1200 Wh/I. SUBLIME proposes the usage of high capacity and high voltage electrode materials. Li metal as anode (LiM), Ni rich NMC material e.g. or NMC90505 as cathode are foreseen to be used to achieve the targeted energy density. The battery will be inherently safe and will be able to operate at room temperature or lower; thus facilitating the start of the vehicle in broad operating conditions. Interfaces showing a fast Li-ion transport will be developed in the project and partners will focus on developing intimate and (electro)-chemically stable interfaces with strong mechanical properties. The interfaces will be specifically designed to increase stability of the component and the malleable nature of the sulfide enables good interfacial contact. SUBLIME will bring the sulfide electrolyte solid-state battery technology to TRL 6. The scale-up to pre-industrial volume will ensure that results are, indeed, scalable to large-volume commercial manufacturing. SUBLIME will deliver a roadmap to 2030, enabling eventual market entry by a very strong constellation of European partners, to bring about the transition towards electric.

P14	Advanced material solutions for safer and long-lasting high capacity	CoFBAT	web			
	Cobalt Free Batteries for stationary storage applications					
Call:	Strengthening EU materials technologies for non-automotive battery st	orage (<u>link</u>)				
Contact person: https://www.cofbat.eu						
Start	Start Date:1/11/19 End date:31/10/23					
Proje	Project Description: For decades, scientists have been exploring materials to produce a new					
gene	ration of long-lasting batteries. The EU-funded CoFBAT project air	ns to develo	p novel			
batte	ries for energy storage that are cobalt free and in a modular format, re	ndering it suit	able for			
diffe	rent wide-ranging applications, be it domestic or industrial. New mate	erials and com	ponents			
will	be developed and optimised to achieve novel battery cells with long	er lifetime, in	nproved			
cicla	ility, lower costs, improved safety, lower environmental impact and me	ore efficient re	ecycling.			
The J	proposed solutions will allow Europe to become less dependent on raw	materials for s	securing			
the s	upply chain, since CoFBAT gathers the whole value chain in battery proc	luction from m	naterials			
to ba	ttery manufacturing, including electrochemical characterization and life	cycle assessm	ent. The			
feasi	pility, of a metal recovery process will also be deeply investigated and	recommendat	ions for			
futur	e application made.					
Obje	ctives: The project main goal is to develop new generation batteries for	battery storag	e with a			
mod	lar technology, suitable for different applications and fulfilling the	e increasing i	need of			
dece	ntralised energy production and supply for private households and	l industrial ro	obotised			
devid	es. New materials and components will be developed and optimised to a	achieve longer	lifetime			
(up t	o 10,000 cycles depending on the material selected), lower costs (down	to 0.03 €/kWł	n/cycle),			
-	oved safety and more efficient recycling (>50%). The expected resul	-				
	petitiveness in advanced materials and nanotechnologies and the related	•	•			
	, preparing European industry to be competitive in these new markets					
	ing high capacity anodes coupled with cobalt free cathode and with a	, .				
	rolyte separator, leveraging partners' knowledge in advanced materials					
	be developed up to a TRL 6 (large prismatic cell ESP-Cell 30Ah) at th					
-	producing these novel high voltage high capacity batteries close to practical applications. Further,					
-	roposed solution will allow Europe to become more independent from					
	bility of a metal recovery process will be deeply investigated and recom					
	cation will be made. To achieve the ambitious targets, the CoFBAT pro	-				
	chain, bringing together industrial experts in material development					
toge	her with engineering companies and institutes and battery producers a	nd integrators	•			

P15	Ecologically and Economically viable Prod	uction and Recycling of	ECO2LIB	<u>web</u>	
	Lithium-Ion Batteries				
Call:	Call: Strengthening EU materials technologies for non-automotive battery storage (<u>link</u>)				
Conta	Contact person: Stefan Durm, stefan.durm@eura-ag.de				
Start	Start Date:1/1/20 End date:30/6/24				
Proje	Project Description: The Sintbat project, http://www.sintbat.eu/home.html, managed to develop				

a cheap and energy efficient, maintenance free, lithium-ion based energy storage system offering an in-service time of 20 to 25 years. The EU-funded project ECO2LIB adds to the successes of that project, shifting focus to a new key performance improvement (KPI), the cycle related costs per energy. An extended LCA, cradle-to-grave will also be setup to judge the environmental impact of the different options and to choose the best. In fact, the ECO2LIB acronym was created to underscore the ecological and economical importance of the project.

Objectives: After the successful project Sintbat, this project aims to continue the effort with the modified objectives of LC-BAT-2-2019. This new call moves the focus to a new KPI, the cycle related costs per energy: €/kWh/cycle. It very well reflects the real need of the customers if a minimum volumetric energy density is added. An extended LCA, cradle-to-grave will be setup to judge the environmental impact of the different options and to choose the best. To show the both ECO-aspects (ECOlogical and ECOnomical) of our project the acronym ECO²LIB was created. Especially for the deployment of advanced battery systems, time to market is an important factor. This criterion is helpful to select between the different electrochemical systems: - Lithium-Sulphur: is heavily investigated, but up to now doesn't show a break-through to reach acceptable cycle life

- Lithium-Air: For this system, many major problems are known to be solved, like Li metal protection, dendrite growth, cleaned air inlet, oxygen-stability of the catholyte - Zinc-Air: is better, but this system, as all Metal-Air systems, will never lead to a maintenance-free battery

- All-Solid-State: has a chance in the polymer version, but rather not in oxidic or sulfidic version - Sodium-Ion: can be potentially interesting for large-scale storage due to cost advantages (replacing Cu with Al), but is still held back due to the lack of a useful and stable anode material and a complex surface chemistry

- Organic-based systems: can be potentially interesting for large-scale storage due to potential sustainability impacts, but have problems regarding energy density (especially volumetric), cycling stability, and materials degradation

Consequently, the consortium decided to continue the improvement of the well-established Lithium-Ion system with advanced materials, methods and corresponding recycling-concept. So it will be possible to directly exploit the results of ECO²LIB in an IPCEI project, which is under preparation.

P16	NA ION materials as essential componen	ts to manufacture robust	NAIMA	<u>web</u>	
	battery cells for non-automotive applicati	ons			
Call: S	Call: Strengthening EU materials technologies for non-automotive battery s				
Conta	Contact person: https://naimaproject.eu/contact/				
Start	Date:1/12/19	End date:31/5/23			

Project Description: The share of renewable energy sources in the EU energy market is constantly growing, demanding highly consolidated technologies such as wind energy and solar photovoltaics to face global competitiveness. The market requires higher flexibility that can be achieved with the growth of decentralised installations and lower costs. However, advanced and cost-effective alternatives to existing technologies are developed in Asia. **The EU-funded NAIMA project intends to develop and test new-generation sodium-ion cells and prove that they are highly competitive, safe, solid and the most cost-effective solution to replace lithium-based technologies. The new technology relies on a robust European battery value chain that is committed to significantly invest in the sector, making EU manufacture highly competitive worldwide.**

Objectives: The EU is transitioning to The EU is transitioning to a secure, sustainable and competitive energy system as laid out in the EC's Energy Union strategy. The growing penetration of renewable energy sources in the EU energy market, go hand in hand with a high-competitiveness of the most consolidated technologies: Wind Energy and Solar Photovoltaics. The non-dispatchable renewable generation requires a higher flexibility in the energy system, where the weight of much more decentralised installations grow day-to-day. In fact, the flourishing of a wide portfolio of renewable energy installations is allowing the deployment of large to small scale industrial electricity grids, and in an increased share of electricity produced in private households. The NAIMA project will demonstrate that the new generation of high-competitive and safety Na-Ion cells developed and tested during the project, is one of the most robust and cost-effective alternatives to unseat the current and future Li-based technologies, nowadays controlled by Asian industry. The EU cannot jeopardize the future of its stronger industry to a technology already in the hands of non-European countries. Just the availability of the raw materials of Li-ion cells is almost a "miracle". Under this scenario, the most robust non-Lithium alternative is the technology based on Sodiumion (Na-ion). This disruptive technology is already supported by a solid European Battery value chain (industry partners of the consortium) through their solid commitment of substantial investments in the manufacturing of all components of a battery, preserving the ownership and industry strength around European countries. Within the framework of the project, 3 SIB prototypes will be tested in 3 multi-scale Business Scenarios to provide solid evidences about the competitiveness of the technology in 3 real ESS environments (renewable generation, industry and private household) through the application of an assessment and monitoring protocol.

P17	17Computer aided design for next generation flow batteriesCompBat			<u>web</u>	
Call: 1	Call: Modelling and simulation for Redox Flow Battery development (<i>link</i>)				
Conta	Contact person: info@compbat.com				
Start	Start Date:1/2/20 End date:31/1/23				
Proje	Project Description: CompBat aims to take flow batteries to the next level, identifying new				

prospective molecules for their chemical composition. Tools will be developed to this end, using machine learning paired with a high-throughput screening method to enable large-scale automated testing. Targeted molecules are bio-inspired organic compounds, as well as derivatives of a specialty bulk-manufactured chemical. Sophisticated calculations will be deployed to obtain data on molecules and their properties. Based on the results, The EU-funded CompBat project will perform modelling of flow battery systems to allow for predictions on performance, and a cost estimation approach will be applied. Furthermore, the team will examine the possibility of using solid boosters to enhance battery capacity.

Objectives: CompBat will focus on developing tools for discovery of new prospective candidates for next generation flow batteries, based on machine learning assisted high-throughput screening. Density functional theory calculations will be used to obtain data on solubilities and redox potentials of different molecules, and machine learning methods are used to develop high-throughput screening tools based on the obtained data. The results of the high-throughput screening are validated with experimental results. Target molecules will be bio-inspired organic compounds, as well as derivatives of the redox active specialty chemical already manufactured in bulk quantities.

Stability and reversibility of the molecules will also be investigated by DFT calculation, experimental investigations and machine learning methods, for a selected group of interesting molecules.

Numerical modelling of flow battery systems will be performed with finite element method, and with more general zero-dimensional models based on mass-transfer coefficients. The models will be verified experimentally, and the modelling will generate a data-set to allow prediction of the flow battery cell performance based on properties of the prospective candidates obtained from high-throughput screening. This data is used then to predict the flow battery system performance from the stack level modelling. Freely available cost estimation tools are then adapted to estimate the system performance also in terms of cost. This approach will allow prediction of the battery performance from molecular structure to cost.

Furthermore, the concept of using solid boosters to enhance the battery capacity will be investigated by developing models to simulate the performance of such a systems, and validating the models experimentally with the candidates already reported in the literature.

P18	Modelling for the search for new active materials for redox flow SONAR web					
	batteries					
Call:	Call: Modelling and simulation for Redox Flow Battery development (<u>link</u>)					
Cont	act person: DrIng. Jens Noack, Adj. Assoc. Prof. (UNSW)					
Fraur	nhofer Institute for Chemical Technology ICT <u>jens.noack@ict.fraunhofer.de</u>					
Start	Date:1/1/20 End date:31/12/23					
Proje	ect Description: SONAR will develop a framework for the simulation-based screening of					
elect	roactive materials for aqueous and nonaqueous organic redox flow batteries (RFBs). It will					
adop	t a multiscale modelling paradigm, in which simulation methods at different physical scales					
will b	e further advanced and linked by combining physics- and data-based modelling. SONAR will					
deve	lop a screening framework to determine levelized cost of storage, starting from the automatic					
gene	ration of candidate structures for the electroactive material, then iterating through molecular-					
, elec	ctrochemical interface-, porous electrodes-, cell-, stack-, system- and techno-economic-level					
mode	els. To increase the throughput of the screening, SONAR will exploit advanced data integration,					
analy	rsis and machine-learning techniques, drawing on the growing amount of data produced during					
the p	project. Project results are expected to reduce the cost and time-to-market of redox flow					
batte	eries, thus strengthening the competitiveness of the EU battery industry.					
Obje	ctives: SONAR will develop a framework for the simulation-based screening of electroactive					
mate	rials for aqueous and nonaqueous organic redox flow batteries (RFBs). It will adopt a multiscale					
mode	elling paradigm, in which simulation methods at different physical scales will be further					
adva	nced and linked by combining physics- and data-based modelling. Competing energy storage					
techr	nologies are only comparable when using the levelized-cost-of-storage (LCOS) as a globa					
metr	ic, accounting for the complex interrelations between factors like CAPEX, lifetime and					
perfo	ormance. SONAR will thus develop a screening framework to determine LCOS, starting from the					
auto	matic generation of candidate structures for the electroactive material, then iterating through					
mole	cular-, electrochemical interface-, porous electrodes-, cell-, stack-, system- and techno-					
	omic-level models. For the iterative traversal of the different scales, exclusion criteria like					
	ility, standard potentials and kinetics will be defined, and the results for individual candidates					
will b	be stored in a database for further processing. To increase the throughput of the screening,					
	AR will exploit advanced data integration, analysis and machine-learning techniques, drawing					
	ne growing amount of data produced during the project. The models will be validated e.g. by					
-	parison with measurements of redox potentials for known chemistries, or measurement data					
	B half-cells and lab-sized test cells.					
	AR will work closely with industrial partners (incl. JenaBatteries, Volterion) to ensure the					
	mercial viability of the results. The models will be exploited individually and in a comprehensive					
scree	ening service offered by Fraunhofer SCAI, facilitating the rapid assessment of the technical and					

economic potential of a new technology in its earliest development stages. This will reduce the cost

and time-to-market, thus strengthening the competitiveness of the EU's battery industry in the emerging field of organic RFBs.

P19	Development of full lignin based orga	nic redox flow battery	BALIHT	<u>web</u>	
	suitable to work in warm environments ar	d heavy multicycle uses.			
Call: A	Call: Advanced Redox Flow Batteries for stationary energy storage (<i>link</i>)				
Conta	Contact person: Javier Peña, AIMPLAS, dgpro@aimplas.es				
Elise R	Elise Regairaz, AliénorEU, elise.regairaz@alienoreu.com				
Start D	Start Date:1/12/19 End date:31/5/23				
Projec	Project Description: The EU-funded BALIHT project is designing new redox organic flow batteries				

that can work at temperatures of up to 80 °C. Researchers claim that the batteries will offer longer duration, higher power and a 20 % higher energy efficiency compared to other organic battery types. The new battery will be based on low-cost, abundant organic molecules that are easily dissolved in water, electrolytes comprising lignin, thin non-fluorinated membranes and carbon electrodes. Redox organic flow batteries are one of the most promising approaches to sustaining a grid powered by the sun and wind, improving grid flexibility and stability and providing high-performance charge points for electric cars.

Objectives: Redox flow batteries (RFBs) are designed to work up temperature of 40°C, however, discharging the battery generates heat. A cooling system is required to avoid electrolyte degradation or battery malfunction. Cooling requires energy and reduces the battery global efficiency. Moreover, higher temperatures have advantages: low electrolyte viscosity (less pump energy), better electrolyte diffusion in electrode & increase battery power due to increase electron mobility.

BALIHT project aims to develop a new organic redox flow battery suitable to work up to temperatures of 80°C, with a self-life similar than current organic ones, but with an energy efficiency 20% higher than current RFB since cooling system is not required, less pump energy & high power.

Redox-active organic molecules with promising prospect in the application of RFBs, benefited from their low cost, vast abundance, and high tunability of both potential and solubility. These organic molecules are more soluble in water, which allows more concentrated electrolyte and increased battery capacity.CMBlu has developed an organic redox flow battery technology that use electrolytes from lignin, thin non-fluorinated membrane, carbon-based electrodes and plastic frames. Lignin is a renewable resource and the largest natural source of aromatic compounds from which efficient electrolytes can be produced.

BALITH concept of organic RFB makes this technology suitable for many applications where the requirements for batteries are more challenging like:

- Smoothing of non-dispatchable renewable power plants (like solar or wind)

- Support for Ancillary services

- High performance electric car recharge points

- Improvement of grid flexibility and stability (at both transmission and distribution level).

- Avoid cooling needs in RFB placed in warm countries (between 40^o Latitude North & 40^o Latitude South).

P20	Copper-Based Flow Batteries for ene	gy storage renewables	CUBER	<u>web</u>	
	integration				
Call: /	Call: Advanced Redox Flow Batteries for stationary energy storage (<u>link</u>)				
Conta	Contact person: Corneliu Barbu, Aarhus University, <u>coba@ece.au.dk</u>				
Start	Date:1/1/20	End date:31/12/23			

Project Description: The search for competitive energy storage is linked to the transition towards renewable energy solutions. The all-copper redox flow battery (CuRFB), based on RFB technology, is designed in a simple, modular and scalable way and offers security and sustainability. **The EU-funded CUBER project will prove that RFB technology can be integrated into Smart Cities and residential self-consumption market segments**. Its development could allow wider applications such as back-up power system in isolated areas, for energy management and grid balancing in renewable energy plants. The project coordinates a wide range of European actors in aiming to develop operating pilots that will confirm and introduce innovative methods to produce and consume renewable energy in urban, rural and industrial sites.

Objectives: The CuBER project proposes the validation of a promising RFB technology, the allcopper redox flow battery (CuRFB), able to cover a wide range of the aforementioned market applications due to its simple, modular and scalable design, security and sustainability. Firstly, a 5kWDC CuRFB pilot will be designed for its integration in Smart Cities and residential selfconsumption market segments within the CuBER action. Subsequently, the planning of further developments will allow its application at larger scales, both as back-up power system in isolated areas (i.e. copper mining) and for energy management and grid balancing in renewable power production.

CuBER thus focuses first on improving the infrastructures for renewables self-consumption and grid integration within the Smart Cities and Net Zero Buildings concepts. It seeks to unify the expertise of different European actors in the field of Electrochemistry, Electrochemical Energy Storage, Electronics, Process Engineering, Smart Sensors, IoT's and Solar Power Industries with the objective of deploying functional pilots capable of validating an holistic and innovative way of producing and consuming renewable energy in urban, rural and industrial areas all around the EU, that will change the actual O&M paradigm, increasing significantly the competitiveness of RFB energy storage solutions in the global energy sector and creating new business opportunities for the companies involved.

P21	Affordable High-Performance Green Redo	x Flow Batteries	HIGREEW	web	
Call: /	Call: Advanced Redox Flow Batteries for stationary energy storage (<u>link</u>)				
Conta	Contact person: Dr Eduardo Sanchez, CIC energiGUNE, esanchez@cicenergigune.com				
Ms Estibaliz Crespo, CIC energiGUNE, <u>ecrespo@cicenergigune.com</u>					
Start	Date:1/11/19	End date:31/5/23			

Project Description: The EU-funded HIGREEW project, composed of nine partners plus the coordinator CIC energiGUNE, aims to design an efficient low-cost organic redox flow battery system. The new battery will be based on water-soluble organic electrolytes, which will be low-cost and compatible with optimised low-resistance membranes and fast electrode kinetics. The new technology will allow researchers to develop more environmentally sustainable redox flow batteries with higher power and energy densities while also offering longer duration. The consortium is aiming for a levelised cost of storage below EUR 0.1/kWh/cycle by the end of the project and EUR 0.05/kWh/cycle by 2030.

Objectives: The objective of HIGREEW (Affordable High-performance Green REdox floW batteries) is to design, develop and validate and an advanced redox flow battery, based on new water-soluble low-cost organic electrolyte compatible with optimized low resistance membrane and fast electrodes kinetics for a high energy density and long-life service. The battery prototype engineering design will be twofold: affordable balance of plant to optimize performance through advanced control strategy to achieve an LCOS of < 0.10€/kWh/cycle at the end of the project and 0.05€/kWh/cycle by 2030 and designed for recycling, to maximize the recycling of the components. The consortium is formed by 9 partners coordinated by CIC Energigune, Spanish research centre, that will be the focus on electrolyte and algorithm development to maximise the batteries life span and minimise its LCOS. The development of advanced materials will be complemented with the University Autonomous of Madrid to improve membranes performance and the French CNRS research centre to optimize the electrode. The 3 key components will be tested and validated at lab scale and cell level with the collaboration of the University of West Bohemia (CZ). The stack engineering will be developed by C-TECH, UK's SME specialised in electrochemical and electroheating process equipment, that will work together with Pinflow to optimize active components at laboratory scale and battery stack design. The system design and scale up to manufacture a battery prototype of 5Kw will be done in collaboration between Heights, UK's engineering, and Gamesa Electric, Spanish large industry leader in renewables. The battery prototype will be tested and validated in the pilot plant of Siemens Gamesa -third party linked to Gamesa- located in Spain. The testing and validation will be the focus on safety-hazards, LCA and LCOS. The exploitation strategy will be led by Uniresearch, who are highly experienced in EU projects. The project will last 40M with a cost of 3,7M€.

P22	Membrane-free Low cost high Density RFI	3	MELODY	<u>web</u>	
Call: Advanced Redox Flow Batteries for stationary energy storage (<i>link</i>)					
Contact person: The MELODY Project, Renewable Energy Department,					
University of Exeter, Penryn Campus, info@melodyproject.eu					
Start	Date:1/1/20	End date:31/3/24			

Project Description: Redox flow batteries (RFBs) are a promising technology for renewable energy storage. However, obstacles such as costly and scarce materials, the short lifetime of catalysts, and the system's complexity and safety problems have prevented introduction to the mass market. **The EU-funded MELODY project aims to develop a sustainable RFB technology that will significantly reduce electricity storage costs by 2030.** To achieve this, the project will apply a unique triple cost reduction strategy to the standard RFB concept, while also tackling the current technology's technical problems in an integrated manner. This work will pave the way for a more extensive integration of renewables in the European energy mix.

Objectives: Redox Flow Batteries (RFB) are a key enabling technology for the energy transition. Mass market introduction of RFB's has been hampered by various factors – material scarcity and cost (e.g. vanadium-based RBF), limited catalyst lifetime, membrane costs, system complexity and safety issues. The development of an economically viable, environmentally benign and sustainable redox-flow battery (RFB) storage systems is therefore eagerly awaited. The MEmbraneless LOw cost high DensitY RFB (MELODY) project will develop a sustainable RFB technology that is able to reduce the costs of electricity storage to an absolute minimum, even below the 0.05 €/kWh/cycle by 2030 as set out in the SET plan. MELODY employs a unique triple cost reduction strategy on the conventional RFB concept while tackling all major technical issues in an integrated manner. The three key elements are 1) A membraneless flow battery concept 2) the choice for hydrogen and bromine 3) Simplified system design.

This approach will results in the realization and operation technology for a practical membraneless H2-Br2 redox flow battery at industrially relevant scale (based on dedicated Cell, Stack and Balance of Plant development and piloting). Hereby MELODY will improve all elements that will be limiting after successfully eliminating the membrane (Electrode and electrolyte development, sustainability and techno-economic assessments). With an unrivalled low Levelized Cost of Storage MELODY's solution is best positioned to change storage from a pure cost factor into a valuable business cases and will enable a wider integration of renewables in the European energy mix. To successfully complete all objectives as set out in the call, MELODY brings together a world-class consortium of SME's (Elestor, PV3 Technologies, Vertech), industry (Shell) and academic leaders (TU Delft, Technion, University of Exeter, ETH Zurich) that has all required know-how and capabilities to complete the project.

P23 CObalt-free Batteries for FutuRe Automot	ive Applications	COBRA	<u>web</u>			
Call: Research and innovation for advanced Li-ion	cells (generation 3b) (<u>link)</u>					
Contact person: cobra@baxcompany.com						
Start Date:1/1/20	End date:31/12/23					
Project Description: Cobalt is necessary for the production of the most common types of lithium-						
ion batteries (Li-ion), like the rechargeable ones used to power our portable electronic devices and						
electric vehicles. The transition to electric mobility is widening the gap between supply and demand						
and increasing the price of cobalt. However, su	ostitution of cobalt in Li-io	on batteries, a	although			
possible, has not taken place. The EU-funded CC	BRA project aims to reve	rse this situat	ion. It is			
developing a cobalt-free cathode with the participation of three universities and seven research						
and technology organisations as well as four SMI	Es and five enterprises, cov	ering the enti	ire value			
chain of the EU battery industry.						
Objectives: COBRA aims to develop a novel Co-free Li-ion battery technology that overcomes many						
of the current shortcomings faced by Electrical Vehicle (EV) batteries via the enhancement of each						
component in the battery system in a holistic manner. The project will result in a unique battery						
system that merges several sought after features, including superior energy density, low cost,						
increased cycles and reduced critical materials. To	achieve these ambitious ta	rgets we will:	upgrade			
the electrochemical performance by focusing on 0	Co-free cathode, advanced	Si composite a	as anode			
and electrolyte/separator; cell manufacturing and testing for electrical and electrochemical						
performance; leverage the use of smart sensors	and advanced communic	ation to optir	mise the			
system control; battery-pack manufacturing that deliver cost-effective and environmentally						
sustainable battery over its lifetime. The proposed Li-ion battery technology will be demonstrated						
at TRL6 (battery pack) and validated it on an automotive EV testbed. The involvement of several						
leading organisation for battery manufacturing ensure easy adaptation to production lines and						
scale up to contribute to a higher market adoption	n while helping to strengthe	en Europe's po	osition in			
the field. Overall, the project includes the participation of 3 universities, 7 RTOs, 4 SMEs and 5						
enterprises covering the entire value chain and st	rongly engaging EU battery	[,] industry.				

P24 Hybrid power-energy electrodes for ne	xt generation lithium-ion	Hydra	<u>web</u>
batteries			
Call: Research and innovation for advanced Li-io			
Contact person: <u>https://h2020hydra.eu/contac</u>	-		
Start Date:1/5/20	End date:31/8/24		
Project Description: Lithium-ion (Li-ion) batteries		•,	
in a wide range of products including personal el		-	-
enabling technology in emerging markets lik			
aerospace. To ensure the continued success of			-
technology are needed to improve performance			
The EU-funded Hydra project aims to develop	-		
sustainable materials to improve the energy,			
combine novel materials and environmentally f			
cell manufacturing to develop high-energy batt	-		
synergy with strong investments by the project'	s industrial partners, aiming	to retain a sig	nificant
market share for Europe.			
Objectives : The core technological approach	of the HYDRA project cor	nsists of using	hybric
electrode technology to overcome the fundame	ental limits of current Li-ion	battery techno	ology ir
terms of energy, power, safety and cost to en	ter the age of generation 3	3b of Li ion ba	tteries
HYDRA, taking its name from the mythological be	east, will use a multi-headed	integrative app	proach
In addition to novel material development a	and scale-up of componer	nts and batter	y cell
manufacturing, assisted by modelling, HYDRA w	ill build a synergy with stro	ng investments	by the
project's industrial partners and foster reaching	and keeping a significant ma	rket share for E	Europe
The necessary competitiveness will be obtain	ed by hybridizing high ene	ergy with high	powe
materials.			
These materials will be implemented at the c	ell/electrode level, via sust	ainable, eco-de	esigned
scaled-up manufacture and safe electrolyte syst	ems, demonstrated in pilot	scale to TRL6, a	nd wil
be ready for commercialisation 3 years after the	project end.		
To reach this target, HYDRA mobilizes a strong in	dustry commitment: the pa	rtners include a	strong
value-chain of suppliers with global competitive	eness for xEV batteries and	a direct liaison	to the
market in sectors such as automotive and mari	time transport, ensuring a	fast-uptake of	results
with an added value of 1BN € in the next decade	•		
Ecological and economical sustainability also	keep a strong importance	e, as HYDRA	will be
performing life cycle assessments and value-cha			
from raw materials via battery cell production a			•
will be evaluated.	,-	5	5
The HYDRA concept uses abundant electrode	materials like iron. manga	nese and silico	on, and
eliminates the use of the CRMs cobalt and natura			
new materials will be produced in an environme			
water in place of organic solvents.	,		

P25 MODelling of Advanced LI Storage Syste	ms	MODALIS2	<u>web</u>
Call: Li-ion Cell Materials & Transport Modelling	(<u>link)</u>		
Contact person: Martin Petit, IFP Energies Nouv	elles, <u>info@modalis2-p</u>	roject.eu	
Start Date:1/1/20	End date:31/12/22		
Project Description: The EU battery sector	faces significant chall	enges in a global	l, highly
competitive environment. As the market of ele	ectric vehicles (EVs) an	d electronic instrur	ments is
growing, a new approach is needed that make	es the development pro	ocesses of next-ge	neration
battery systems cost-efficient. The EU-funded	d MODALIS2 project p	proposes an all-int	tegrated
development process that increases capacity a	nd considerably reduce	es costs of EV batte	ery cells.
The goal of the project is to develop and va	lidate modelling and s	simulation instrum	ents for
expediting the development of batteries wit	h higher capacity and	materials with in	nproved
performance. It aims to increase battery sa	fety during transport	and functioning, o	optimise
cyclability and decrease production costs. The p	roject will test and prep	are the new cell ge	neration
with a high capacity of storage for mass product	ion.		
Objectives : For a competitive EU battery sec	tor, the development	of next-generation	battery
systems needs cost-efficient processes. MODA	LIS ² will make a signific	ant contribution to	o a cost-
down for EV battery cells through an all-integrated	ted development proces	ss based on numeri	cal tools
relying on extensive measurement data and ma	terial characterization	all the way down to	o micro-
structures.			
With the integrated modelling and simulation,	MODALIS ² will provide	degrees of freedom	n for the
cell and hattery development processes that al	lows to address the fall	owing design challe	ongoci il

cell and battery development processes that allows to address the following design challenges: i) faster development of batteries with higher energy density with new materials; ii) faster development of materials with higher optimized performances for higher-energy battery applications; iii) improved battery safety during transport and operation; iv) optimization of cyclability; v) lower development costs; and vi) better understanding of material interactions within the cell.

The main achievement of MODALIS² is to develop and validate modelling & simulation tools for Gen 3b cells by aiming for higher capacities for the positive & negative electrodes; and for Gen 4b cells by enabling the use of solid electrolytes for improved safety and to facilitate the use of Li-M for the negative electrode. These new technologies are submitted to new specific mechanisms and phenomena (mechanical stresses on negative electrodes, volumetric expansion, solid electrolytic conduction) that are not considered by current modelling and simulation tools. MODALIS² will address the material characterization of next-generation (3b and 4b) Li-Ion cells in different physical domains, then expanding a carefully chosen set of models towards integrating new cell generations and implementing the models into a numerical simulations toolchain scalable to mass production. The modelling & simulation toolchain will allow faster time-to-market for next-generalls.

P26 MODelling of Advanced LI Storage Syste	ms	Liplanet	<u>web</u>
Call: Network of Li-ion cell pilot lines (<u>link)</u>			
Contact person: https://www.liplanet.eu/join			
Start Date:1/1/20	End date:31/3/22		
Project Description: The development of e-mo	pility and electric pow	er sectors are	strategic goals
of the European Union. However, Europe sti	ll needs more efficie	nt, high-perfo	rmance Li-ion
batteries as there is Asian dominance in this field	d. The EU must develo	p a competitiv	e Li-on battery
production value chain. The EU funded LiPLAN	ET project aims to cre	eate an ecosys	tem for viable
industrial scale manufacture of high-performar	i ce Li-ion cells . This wi	ll be achieved v	with a network
of significant European Li-ion cell pilot lines and	most important relate	ed entities. The	ir tasks will be
to identify needs and assets, organise coopera	tion of scientists and	industry, train	ings and legal
framework enabling pilot lines, as well as testing	g methods to form the	production ro	admap.
Objectives : The development of cost-effective,	reliable, and high-perf	ormance batte	ery cells will be
essential to strategic sectors in Europe such as	the automotive indust	try (electro-mo	bility) and the
electric power sector. However, the world prod	uction of battery cells	is largely domi	nated by Asian
companies. To reduce the gap with the battery	cell production in Asia	and become a	world leader,
the EU must have independent capacity to deve	lop, upscale and prod	uce battery cel	ls.
LiPLANET aims to build a more competitive	Li-ion battery cell ma	anufacturing e	cosystem and
increase the production of Li-ion cells toward	s industrial scale, by	bringing toge	ther the most
relevant European Li-ion cell pilot lines and	I the main stakehold	ders of the b	attery sector.
The creation of a network of Li-ion cell pilot line	es will allow to exploit	synergies betw	ween pilot line
operators, identify knowledge and equipment	gaps, organise joint	trainings as w	vell as, favour
collaboration with industry and academia, and f	acilitate the access to	market.	
For this purpose, different activities have been of	designed:		
-the mapping of the European Li-ion cell pil	ot lines and the imp	plementation	of a network,

-the mapping of the European Li-ion cell pilot lines and the implementation of a network, -the creation of a standardised legal framework and a data exchange platform for the cooperation between industry, academia and pilot lines,

-a round-robin test to compare qualification methods,

-the development of a roadmap to reach industrial scale production.

LiPLANET's consortium is formed by recognised entities in this field. In that sense, they will be in a good position to create awareness of the network. The grounds of the project and sustainability of the network (based on a series of services provided to the battery industry) were first discussed during the European Battery Cells R&I workshop in January 2018 in Brussels, and during a dedicated workshop in September 2018 in Frankfurt.

P27 MODelling of Advanced LI StoHigh-Voltage Spinel	HighSpin	Web
LNMO Silicon-Graphite Cells and Modules for		
Automotive and Aeronautic Transport Applications		
rage Systems		
Call: Cross-sectoral solutions for the climate transition (HORIZ	DN-CL5-2021-D2-01	L) (<u>link)</u>
Contact person: AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GM	BH , <u>(link)</u>	
Start Date: 1/9/22End date: 31,	/8/26	
Project Description: The EU-funded HighSpin project aims t	o strengthen the	position of the
European battery industry by delivering the next generation of	f battery cells for a	automotive and
aviation applications. In particular, it aims to develop a cell	with a silicon/grap	hite anode and
lithium nickel manganese oxide cathode. The HighSpin cell will	be designed for 2	000 deep cycles
and will deliver an energy density of 390 Wh/kg. Project ac	ivities will include	microstructure
optimisation of the active materials, development of high-volt	age electrolyte forr	nulations, high-
speed laser structuring of the electrodes, and the inclusion of ce	II-level sensors. Res	earchers aim to
bring the technology to TRL 6.		
Objectives: HighSpin aims to develop high-performing, safe ar	nd sustainable gene	eration 3b high-
voltage spinel LNMO Si/C material, cells and modules with a s		
demonstrate their application for automotive and aeronautic		
addresses in full the scope of the HORIZON-CL5-2021-D2-01-0		
"high-voltage" line. The project objectives are: Further develo		
compared to the reference 3beLiEVe baseline, extracting its ma	•	•
manufacture LNMO Si/C cells fit for automotive and aer		
demonstrate battery modules for automotive and aeronautic a		
LMNO Si/C HighSpin technology vs. performance, recyclabilit		- .
delivers 390 Wh/kg and 925 Wh/l target energy density, 790		
density (at 2C), 2,000 deep cycles, and 90 €/kWh target cost		-
encompass stabilization of the active materials via microstruct	-	-
of high-voltage electrolyte formulations containing LiPF6 and Li		-
the electrodes, and the inclusion of operando sensors in the form		
Unit (CMU). HighSpin will demonstrate TRL 6 at the battery m		
gravimetric energy density ratio of 85-to-90% (depending of		
demonstrated, targeting 90% recycling efficiency at 99.9% purity	•	•
market as a second-step generation 3b LNMO Si/C in the (aeronautics), delivering above 40 GWh/year and 4 billion/year		
2030.		reference yed
2030.		

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon Europe under Grant Agreement No 101058124 <u>https://enicon-horizon.eu/</u>

P28 Innovative and Sustainable High Voltage Li-ion Cells for Next Generation (EV) Batteries	IntelLiGent	web
Call: Cross-sectoral solutions for the climate transition (HOI		(1)
	KIZOIN-CL5-Z0Z1-D	72-01) (<u>IIIIK)</u>
Contact person: SINTEF AS (link) Start Date: 1/9/22 End date:	21/8/25	
Project Description: Focusing on electromobility applicatio		tric cars. buses and
trucks, the EU-funded IntelLiGent project will develop and		
high voltage lithium-ion batteries with increased energy de		
life. IntelLiGent will combine Co-free high voltage cathod		
anodes to increase energy- and power- densities. As an e	• •	
manufacturing processes are compatible with those currently		-
goal is to provide a direct boost to the European battery v	value chain by ena	bling world-leading
battery technologies using already optimised manufacturir	ng methods. Furth	er, the project will
focus on materials production and processing routes which s	ubstantially reduce	e the manufacturing
cost and environmental footprint.		
Objectives: The IntelLiGent project answers to the need for	r general public ac	ceptance of EVs, by
facilitating the industrial deployment of next-generation batt	teries allowing for	an increased driving
range, fast charging capabilities, low cost and increased safe	ty. IntelLiGent wil	l develop European
generation 3b high voltage (>4.7 V) LIBs with increased er	nergy density (>35	50-400 Wh/kg, 750-
1000 Wh/l), charge acceptance (>2C) and cycle-life (>2000 d	leep cycles) compa	ared to the state-of-
the-art, while reducing cost (<100 €/kWh on pack level) a	nd carbon footpri	nt of the produced
cells. The ambitious goals will be realized through optimize	ed cells produced	with; - High-voltage
spinel LNMO cathode materials engineered to enhance sta	bility and enable	aqueous processing
whilst exploring strategies to increase specific capacity b	peyond the theor	etical maximum of
standard LNMO - Energy efficient high-capacity stable Si-Gr	anodes delivering	g 850 mAh/g - High-
voltage electrolytes with innovative additives that form pro-	otective layers on	the anode and the
cathode - Self-mitigating and healing binders and separat	ors minimize para	asitic reactions and
degradation - Novel open-source modelling tools and high-t	hroughput screeni	ng will be employed
to accelerate the development of environmentally benign m	naterials with mini	mized use of critical
raw materials -Optimized electrode design (≥4.5 mAh/cm2) a	-	
automotive cells (20 Ah) as well as battery modules (1 kWh)		-
a prerequisite for succeeding is continuity in battery R&Da		-
required staff, which IntelLiGent will foster by broad dissem	-	
results across the battery value chain. The project will res	-	
battery value chain by developing European industries with		nologies on battery
materials, and allowing for accelerated roll-out of electrificat	tion for mobility.	

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon Europe under Grant Agreement No 101058124 <u>https://enicon-horizon.eu/</u>

P29 Composite Silicon/Graphite Anodes with Ni-Rich Signe web Cathodes and Safe Ether based Electrolytes for High **Capacity Li-ion Batteries** Call: Cross-sectoral solutions for the climate transition (HORIZON-CL5-2021-D2-01) (link) Contact person: UNIVERSITY OF LIMERICK (link) Start Date: 1/9/22 End date: 31/8/25 Project Description: The EU-funded SiGNE project aims to develop advanced lithium-ion battery technology with higher energy density, optimised chemistry and faster charging time compared to state of the art. To achieve their goals, researchers will use a certain amount of silicon in the anode and electrically connect it to the graphite material. Nanowires will improve silicon's beneficial properties by increasing the amount of available surface area in contact with the electrolyte. A sustainable fibre-based separator will be developed, acting as an isolation layer between the anode and cathode. Researchers will demonstrate the innovative battery at scale to enable its adoption in electric vehicles. Furthermore, they will consider circular economy principles to address second-life applications once the lifespan of the battery comes to an end. Objectives: SiGNE will deliver an advanced lithium-ion battery (LIB) aimed at the High Capacity Approach targeted in this work programme. Specific objectives are to (1) Develop high energy density, safe and manufacturable Lithium ion battery (2) optimise the full-cell chemistry to achieve beyond state of art performance (3) Demonstrate full-cell fast charging capability (4) Show high fullcell cycling efficiency with >80% retentive capacity (5) Demonstrate high sustainability of this new battery technology and the related cost effectiveness through circular economy considerations and 2nd life battery applications built upon demonstrator and (6) Demonstrate high costcompetitiveness, large-scale manufacturability and EV uptake readiness. SiGNE will achieve these objectives by incorporation of 30% Si as a composite where it is electrically connected to the Graphite in nanowire form. This will realise a volumetric ED of >1000 Wh/L when pre-lithiated and paired with a Ni-rich NCM cathode optimised to deliver 220 mAh/g. This will be further enabled by a specifically designed electrolyte to maximise the voltage window and enable stable SEI formation.

a specifically designed electrolyte to maximise the voltage window and enable stable SEI formation. A sustainable fibre based separator with superior safety features s in terms of thermal and mechanical stability will be developed. SiGNE will establish the viability of volume manufacturing with production quantities of battery components manufactured by project end. The battery design and production process will be optimised in a continuous improvement process through full cell testing supported by modelling to optimise electrode and cell designs through manufacture as a prismatic cell and prototype testing at by OEMs. (SOH) monitoring across the entire battery lifecycle will optimise safety 2nd use viability. SIGNE will go significantly beyond SoA with recovery of anode, cathode and electrolyte components. In this circular economy approach recovered materials will be returned to the relevant work package to produce new electrodes.

P30	Gen. 4b Solid State Li-ion battery by additive	AM4BAT	web
	manufacturing		
Call: C	Cross-sectoral solutions for the climate transition (HO	RIZON-CL5-2021-D	2-01) (<u>link)</u>
	ct person: ACONDICIONAMIENTO TARRASENSE ASSO		
	Date: 1/7/22 End date		
-	ct Description: Next-generation lithium-ion batteries		
-	r densities at a lower cost. Current battery manufact		
	key metrics. The EU-funded AM4BAT project w	-	_
	ologies for fabricating 3D lithium-ion batteries. Using		• •
	im is to develop a high-performance battery with end		
	les. AM4BAT outcomes will contribute to the creation		
	facturing value chain, helping the EU to succeed in the	· ·	
Objec	tives : AM4BAT will develop innovative component ma		
solid-		-	
photo	ppolymerization 3D printing. The objective is to reach a	a high-performance	e battery the energy
densit	ty of 400 Wh/kg and 1000 Wh/L for electric vehicles	applications. This	will be achieved by
devel	oping materials including i) single crystal NMC811 with	superior energy, ii) LNMO Co-free and
highe	r voltage for power AM4BAT variant, iii) dopped LLZO v	with different size f	rom 0.5 to 5µm and
	0 nm for higher loading in the HSE, and iv) nov	•	
photo	ocurable polymer. The materials will be optimize	d for their proc	essing by additive
manu	facturing. AM4BAT will then validate the technology v	ia 3-Ah pouch cells	reaching TRL5, and
will ca	arry out an evaluation of manufacturability, a full sus	tainability assessm	ent and a recycling
	to support customers' uptake. Identified stakehold		
initiat	ives will be actively involved to ensure dissemination	of AM4BAT results	and broader users'
ассер	tance. With its ambitious concept based on cutting	edge 3D printed	ASSB and a strong
conso	rtium involving the whole value chain from material p	providers to an OE	M, AM4BAT aims to
overc	ome the remaining technological obstacles of the Gen	4b technology as s	pecified in the work
progra	amme and accomplish the urgent shorter-term needs o	of the battery indus	try: to make Gen 4b
batte	ries a viable technology beyond 2025. On longer term,	the AM4BAT outco	omes will contribute
to the	e creation of a sustainable European battery manufa	cturing value chai	n helping the EU to
succe	ed in the electric mobility roll-out and accelerate the e	nergy transition.	

P31	Halide solid state batteries for ELectric vEhicles aNd	HELENA	web
	Aircrafts		
Call:	Cross-sectoral solutions for the climate transition (HO	RIZON-CL5-2021-	D2-01) (<u>link)</u>
Conta	act person: CENTRO DE INVESTIGACION COOPERATIVA	DE ENERGIAS ALT	ERNATIVAS
FUND	DACION, CIC ENERGIGUNE FUNDAZIOA (link)		
		: 31/5/26	
-	ct Description: The next generation in electric ve		
•	cement of lithium-ion batteries with higher-performin	-	
	lop different types of solid-state batteries to fulfil the		
	ration 4b batteries have higher energy densities and l	0	
proje	ect will respond to the need for a safe, high ener	gy efficiency soli	d-state battery cell.
	archers are looking to produce a Generation 4b batte		•••
	I anode, a nickel-rich nickel-manganese-cobalt ca	-	
elect	rolyte. Project activities should enable low-cost, scalab	le and safe cell ma	anufacturing and fast
batte	ery charging, thereby boosting the electric vehicles' driv	ving range.	
Obje	ctives: To support the upcoming short-term needs of t	he battery indust	ry, it is imperative to
have	new differentiating European battery technology for	4b generation bat	teries on the market
from	2025. Halide solid state batteries for ELectric vEhicles a	aNd Aircrafts (HEL	ENA) responds to the
need	of the development of a safe, novel high energy eff	ficiency and powe	er density solid state
batte	ery (4b generation batteries) cells, based on high capac	ity Ni-rich cathode	e (NMC), high-energy
Li me	tal (LiM) anode and Li-ion superionic halide solid electr	olyte for application	on in electric vehicles
and,	especially in aircrafts. HELENA will support Europe, in	this sense, on its	transition towards a
clima	te-neutral continent since electric aviation is poised to	take off within the	next five to 10 years,
with	innovations already being pursued for electric vehicle l	oatteries. Moreov	er, HELENA will avoid
depe	ndence on Asia for battery production. HELENA is b	ouilt by a multidi	sciplinary and highly
resea	urch experienced consortium that covers the whole	battery value ch	ain and proposes a
disru	ptive halide-based solid-state cell technology with the	overall aim to sign	ificantly increase the
adop	tion of these batteries on aircrafts and EVs The tech	nical challenges th	nat are presented by
curre	nt conventional battery technology and the consumer	needs will be over	come - especially the
reduc	ction in costs of battery devices, enable scalable and sa	afe cell manufactu	iring, increasing their

capabilities for long distance traveling and fast charging, ensuring a high safety of the battery.

P32	SOLID-STATE LITHIUM METAL BATTERY	with in	SEATBELT	web		
	SITU HYBRID ELECTROLYTE					
Call: 0	Call: Cross-sectoral solutions for the climate transition (HORIZON-CL5-2021-D2-01) (<u>link)</u>					
Conta	Contact person: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS (link)					
Start	Date: 1/7/22	End date	: 30/6/26			

Project Description: Electric vehicles are powered by batteries, which are the most important part. But the demand for electric vehicles is increasing so fast that it will soon outpace battery cell production. The EU-funded SEATBELT project will help to pave the road towards a cost-effective, robust all-solid-state lithium battery comprising sustainable materials by 2026. Specifically, it will achieve the first technological milestone of developing a battery cell that meets the needs of the electric vehicle industry. The low cost cell will be safe by design with sustainable and recyclable materials, reaching high energy densities and long cyclability in line with the 2030 EU targets. The project will be the start point of the first EU all solid-state battery value chain.

Objectives: As of 2025, new generations of Li batteries based on silicon/carbon (Gen. 4a) and Li metal (Gen. 4b) anode, where flammable liquid electrolyte is replaced by a non-flammable solidone, will take over the current Li-ion device. However, only all-solid-state Gen. 4b Li batteries are expected to fulfil the needed cell gravimetric energy density specifications demanded by electromobility and stationary applications. Therefore, SEATBELT ambition is to generate a local EU industry that revolves around a cost-effective, robust all-solid-state Li battery comprising sustainable materials by 2026. SEATBELT intends to achieve the first technological milestone of developing a battery cell (TRL5) meeting the needs of Electric Vehicle (EV) and stationary industry. The low-cost SEATBELT cell is safe-by-design with sustainable and recyclable materials, reaching high energy densities (>380 Wh/kg) and long cyclability (>500 cycles) by 2026 in line with the 2030 EU targets. The cells are produced by low-cost solvent-free extrusion process comprising a combination of innovative materials: thin Li metal, hybrid electrolyte, a safe cathode active material without critical materials and thin Al current collector. The cell design being optimized by interface (operando and atomistic modelling) and process (machine learning) methodologies. In addition, new in situ imaging instrumentation will be developed to investigate safety properties and mechanical deformation to assess cell safety in real conditions. An innovative recycling cycle from materials to cell level will be also established. Thus, SEATBELT will be the start point of a first EU allsolid-state battery value chain, whose main players in RTD and Industry sectors are within the consortium. So, cells and modules will cycle using industrially relevant protocols dedicated to EV and stationary applications. SEATBELT consortium is composed of 14 beneficiary partners and 3 affiliated entities, and one associated partner, from 7 European countries with an overall budget of 7851448.50€.

P33	Developmen	t of ADVA	nced nex	t GENeration	ADVAGEN	web
	Solid-State	batteries	for E	lectromobility		
	Applications					
Call: Cr	oss-sectoral so	olutions for	the climate	e transition (HO	RIZON-CL5-2021-I	02-01) (<u>link)</u>
Contac	t person: AVES	STA BATTERY	' & ENERG'	Y ENGINEERING	(<u>link</u>)	
Start D	ate: 1/8/22			End date	: 31/7/26	
Project	Description:	To date, the	battery m	arket is domina	ted by lithium-ion	(Li-ion) chemistries,
as the	energy density	has more t	han double	ed and their cos	ts have dropped b	y a factor of at least
10. Ho	wever, convent	tional Li-ion	batteries ((LIB) are reachir	ng their performan	ce limits in terms of
energy	density and fa	cing safety is	sues, is rec	quired the deve	opment and produ	iction of new battery
genera	tions, such as	Solid-State I	Batteries (S	SSBs), to create	a new industry va	alue chain in Europe
toward	s their comme	rcialization.	Consequer	ntly, high-energ	y-density EU-made	SSBs will ensure the
supply	of, among othe	ers, the auto	motive sec	tor. To do so, th	e development and	d deployment of new
manufa	acturing techno	ologies, enat	ling the la	rge-scale produ	ction of SSBs, is cr	ucial. Indeed, among
the ove	erarching them	es to develo	op and pro	duce sustainab	le batteries in the	future, the BATTERY
2030+	roadmap4 con	siders manu	facturabili	ty as a cross-cu	tting key area. Inn	ovative and scalable
manufa	acturing techn	iques to pro	oduce SSB	s will accelerat	e cost reduction,	energy savings, and
enhand	ed safety. ADV	/AGEN will o	levelop a r	new lithium me	tal (LiM) battery c	ell technology based
on a sa	fe, reliable, an	d high perfo	orming hyb	orid solid-state	electrolyte (LLZO-L	.PS based), gaining a
compe	titive advanta	ge over the	e worldwid	de (mainly Asia	an) competition.	This will sustainably
strengt	hen the EU as	a technolo	gical and	manufacturing	leader in batteries	s as specified in the
ERTRA	C electrification	n roadmap a	and SET-Pla	an Action Point	-7. ADVAGEN cons	sortium contains key
EU act	ors in the batt	tery sector,	from indu	strial materials	producers (SCHT,	CPT, ABEE), battery
manufa	acturer (ABEE)	to R&D cen	ters (IKE, C	CEA, IREC, TUB,	CICe, POLITO, INE	GI, UL, FEV) and the
autom	otive industry (TME), cover	ing the cor	nplete knowled	ge and value chain	. By developing high-
perforr	mance, afford	able and	safe batt	eries, ADVAG	EN aims to re-	establish European
compe	titiveness in ba	ttery cell pr	oduction.			
Ohiost	ivos: Now proje	act na infa	mation ou	-: - -		

Objectives: New project - no information available.

P34	PUIsed Laser depoSition tEchnology for soLid State battery manufacturing supported by digitalizatiON	PULSELION	web
Call: Cr	oss-sectoral solutions for the climate transition (HC	DRIZON-CL5-2021-D	92-01) (<u>link)</u>
Contac	t person: RISE RESEARCH INSTITUTES OF SWEDEN AB	(<u>link</u>)	
		e: 31/8/2026	
-	Description: The EU aims to have at least 30 million		
	n-house production of high-performance battery teo	.	•
	vehicles. The EU-funded PULSELiON project a	-	-
	logy for Generation 4b solid-state batteries. These		
-	sulfide solid electrolytes and a nickel-rich nickel-ma	0	•
	eposition technique will be adapted and modified int	. .	•
	ficient manufacturing of the batteries' anode co	mponents. The cat	hode layer will be
•	ed using conventional wet processing techniques.		
-	ives: Europe's objective to have 30 million electric		•
	ed by large scale, in-house production of highly	•	
	pment of solid-state battery technologies could im		
	metal solid state batteries. PULSELiON project aims		
	4b solid-state batteries (SSBs) based on lithium-met		•
	rich NMC cathode. Novel pulsed laser deposition te	• •	•
-	pted and modified into a single-step vacuum process		-
	components composed of lithium metal, prote	•	
	lytes. The cathode layer will be made based on co	•	•
-	r, the anode and cathode layers will be developed i		-
	ayer cells for optimising the materials and process. SS		• •
	s routes and will be upscaled to a pilot line proof-of-		
	olid-state batteries (10 Ah). Digitalisation will be inco		-
	e inputs obtained from process upscaling and cell t	esting tasks, which	will enable efficient
process	s optimisation.		

P35	Sustainable manufacturing and optimized	SOLID	web				
	materials and interfaces for lithium metal						
	batteries with digital quality control						
Call: Cross-sectoral solutions for the climate transition (HORIZON-CL5-2021-D2-01) (<u>link</u>)							
	ct person: TEKNOLOGIAN TUTKIMUSKESKUS VTT OY –						
		e: 1/9/26					
-	t Description: The SOLiD project will create a sus		•				
	facturing process for a high energy density, safe ar						
batter	y. We will use roll-to-roll (R2R) dry extrusion coating	for the blend	of cathode active material,				
solid p	oolymer electrolyte, and conducting additives. R2R	slot die coate	d primers on the cathode				
curren	t collector will enhance adhesion, performance an	d corrosion r	esistance of the cell. The				
polym	er electrolyte layer will be R2R coated, using an opti	mal design for	r the slot die head. For the				
Li met	al anode, we will utilize cost-efficient R2R pulsed las	er deposition,	which enables minimizing				
the Li	thickness down to 5 μ m. The Li metal production wil	l be combined	I with an inline process for				
interfa	cial engineering to ensure compatibility with the	other layers a	and stability. The process				
develo	opment will be supported by digitalization method	s to go towa	rds zero-defect and cost-				
efficie	nt manufacturing. The proposed methods enable sus	tainable man	ufacturing of Gen. 4b solid				
state	batteries with minimised amount of critical raw m	aterials (Co a	nd Li), and with superior				
perfor	mance and safety: The protective layers enable the	ne use of NM	IC811, which reduces the				
amour	nt of Co into minimum without compromising the life	time, and PLD	process helps to minimize				
the Lit	thickness. Dry coating eliminates the use of toxic solve	ents and energ	gy-consuming drying steps,				
and th	e digital quality control will reduce the amount of w	aste. The thic	kness of each layer will be				
minim	ized to reach energy density above 900 Wh/l. C	Cost will be r	reduced by cost-effective				
produ	ction methods and by maximizing the yield. Safety a	nd long cycle	life are guaranteed by the				
solid e	lectrolyte and the protective interlayers. Supported b	by the life-cycl	e thinking and stakeholder				
engag	ement, the SOLiD project will enable the design for	a sustainable	solid state battery factory				
of the	future.						
Ohioc	tives: New project - no information available						

Objectives: New project - no information available.

P36	Scalable and sustainable pilot line based on	SPINMATE	web
	innovative manufacturing technologies towards		
	the industrialization of solid-state for the		
	automotive sector		
Call: Cr	oss-sectoral solutions for the climate transition (HC	RIZON-CL5-2021-D	92-01) (<u>link)</u>
Contac	t person: AVESTA BATTERY & ENERGY (<u>link</u>)		
	•••	: 31/7/26	
-	Description: EU-funded SPINMATE aims to demon		
cost-ef	fective digital-driven proof-of-concept pilot line, at	a TRL6 level, as a fi	rst step towards the
large-so	cale manufacturing of generation 4b (Gen 4b) S	SB cells and mod	ule to support the
electrif	ication of the automotive sector. To do so, SPIN	MATE proposes the	e development and
implem	entation of innovative and scalable manufacturing	and processing sol	utions. SPINMATE's
Gen 4b	SSB cells will create a new industry value chain in E	urope towards their	r commercialisation.
This ne	w generation technology will ensure enhanced en	ergy densities, over	rcoming current LIB
limitati	ons; improved safety; increased sustainable mas	s production; and	decreased carbon
footprii	nt and cost.		
Objecti	ves: SPINMATE aims to demonstrate a scalable, sus	tainable, safe and c	ost-effective digital-
driven	proof-of-concept pilot line, at a TRL6 level, as	a first step towa	rds the large-scale
manufa	ncturing of generation 4b (Gen 4b) SSB cells ar	nd module, in orc	ler to support the
electrif	ication of the automotive sector. To do so, SPINI	MATE proposes the	e development and
implem	entation of innovative and scalable manuf	acturing and pr	ocessing solutions
(notchi	ng/cutting, stacking and sealing/packaging steps, am	ong others). Furthe	rmore, new industry
4.0 and	l 5.0 concepts (Industrial Internet of Things – IIoT a	nd Machine Learni	ng – ML algorithms,
Digital ⁻	Twins, giga-factory line simulation,) are proposed t	o be applied for the	digitalisation of the
proof-o	f-concept pilot line, as well as the assembly and ma	nufacturing process	es. Thus, SPINMATE
will ma	nufacture small 1 Ah and large 10 Ah SSB cells, afte	r the development	and optimisation of
(i) adva	anced solid polymer electrolyte with high ionic c	onductivity and w	ide electrochemical
stability	ر, (ii) Li metal foil with surface treatment enabling a	more stable interfa	ce as anode and (iii)
Ni-rich	layered oxide cathode with improved cycling stabilit	y. Regarding electro	odes (i.e. anode and
cathode	e) and electrolyte processing, innovative solvent-fre	e extrusion routes,	roll-to-roll approach
and op	timised solvent casting methods are suggested. SPI	NMATE's Gen 4b SS	SB cells will create a
-	dustry value chain in Europe towards their cor		
	logy will ensure (i) enhanced energy densities, o		-
	ed safety in both solutions and workers; (iii) increase	-	
-	sed carbon footprint and cost		

	Carbon Neutra	al European	Battery	Cell I	BatWoMan	web
	Production wit	th Sustainable	e, Innova ⁻	tive		
	Processes and	3D Electrode	e Design	to		
	Manufacture					
Call: Cr	oss-sectoral solution	ons for the clima	te transitior	ו (HOR	ZON-CL5-2021	-D2-01) (<u>link)</u>
Contact	t person: AIT AUST	RIAN INSTITUTE	OF TECHNOI	LOGY (GMBH <u>(link)</u>	
	ate: 1/9/22				81/8/25	
Project	Description: Euro	ope's leadership	position i	n sust	ainable batter	y production will be
secured	l via new sustainab	ole and cost-effic	ient lithium	-ion ba	ttery cell prod	uction. This is the goal
of the E	U-funded BatWoN	lan project, pavi	ng the way t	oward	s carbon-neutr	al cell production. The
projecť	's efforts will focu	is on energy eff	ficient and	no vol	atile organic c	ompounds processed
electro	des, with slurries o	of high dry mass	content. It	will al	so establish an	innovative dry room
reducin	g concept with imp	proved electrolyt	e filling. Low	/-cost a	nd energy-effic	cient cell conditioning,
namely	wetting, formation	and ageing, is als	so on the pro	oject's	agenda. An inno	ovative platform based
on Al w	ill support these te	chnological impr	ovements. T	he ove	rall goal of the	project is to reduce by
more th	nan half the cell pro	duction cost and	l energy con	sumpt	ion.	
Objecti	ves : BatWoMan de	velops new sust			fficiant Li ian h	
	ts, paving the way		ainable and	cost-e	molent Li-ion b	attery cell production
concep	is realized via the following technological efforts: 1) energy-efficient, no volatile organic compounds					
•	ed via the following	towards carbon	neutral cell	produc	tion within the	European Union. This
is realiz	-	towards carbon i g technological ef	neutral cell forts: 1) ene	produc rgy-eff	tion within the icient, no volat	attery cell production European Union. This le organic compounds innovative dry room
is realiz (VOCs)	processed electro	towards carbon is technological ef des, with slurrie	neutral cell forts: 1) ene es of high c	produc ergy-eff dry ma	tion within the icient, no volati ss content; 2)	European Union. This le organic compounds innovative dry room
is realiz (VOCs) reducin	processed electro g concept with	towards carbon is g technological ef des, with slurrie improved elect	neutral cell forts: 1) ene es of high c rolyte fillin	produc rgy-eff dry ma g; 3)	tion within the icient, no volat ss content; 2) low-cost and	European Union. This le organic compounds
is realiz (VOCs) reducin conditio	processed electro g concept with oning, namely wett	towards carbon in g technological ef des, with slurrie improved elect ing, formation an	neutral cell forts: 1) ene es of high c rolyte fillin id ageing. Th	produc rgy-eff dry ma g; 3) ne abov	tion within the icient, no volati ss content; 2) low-cost and e stated techno	European Union. This ile organic compounds innovative dry room energy-efficient cell
is realiz (VOCs) reducin condition will be	processed electro g concept with oning, namely wetti supported digitall	towards carbon in g technological ef des, with slurrie improved elect ing, formation an y via creating a	neutral cell forts: 1) ene es of high c rolyte fillin Id ageing. Th n Al-driven,	produc rgy-eff dry ma g; 3) ie abov innov	tion within the icient, no volati ss content; 2) low-cost and e stated techno ative platform	European Union. This ile organic compounds innovative dry room energy-efficient cell plogical improvements
is realiz (VOCs) reducin conditio will be constar	processed electro g concept with oning, namely wetti supported digitall ntly monitoring the	towards carbon in g technological ef des, with slurrie improved elect ing, formation an y via creating a sustainability an	neutral cell p forts: 1) ene es of high c rolyte fillin nd ageing. Th n Al-driven, d efficiency	produc ergy-eff dry ma g; 3) ne abov , innov of the	tion within the icient, no volati ss content; 2) low-cost and e stated techno ative platform proposed indivi	European Union. This ile organic compounds innovative dry room energy-efficient cell plogical improvements for smart re-tooling,

consumption reduction by 52.6% and therefore enable a European leadership position in

sustainable battery production.

P38	Towards	the	sustainable	giga-fact	ory:	GIGAGREEN	web
	developing	green o	ell manufactur	ring process	ses		
Call: Cr	Call: Cross-sectoral solutions for the climate transition (HORIZON-CL5-2021-D2-01) (<i>link</i>)						
Contac	Contact person: VIRTUAL VEHICLE RESEARCH GMBH (link)						
Start Date: Not available End date: Not available							
Project	Description:	The EU	has established	d an ambitio	ous in	dustrial goal to m	ake Europe a strategic
global l	eader in the I	Li-ion ba	ittery value cha	iin, deployii	ng a si	ustainable and inr	novative industry. This
urges tl	he sector to r	nake su	re that the indu	ustrial prod	uctior	n is inherently sus	tainable, safe, flexible
and cos	st-effective w	hile deli	vering cutting e	edge cells. 1	he m	ain objective of G	IGAGREEN is to boost
the nex	kt wave of e	lectrode	e and cell com	ponent pro	cessi	ng techniques, er	nabling breakthrough
innovat	tions to impr	ove the	environmenta	l, economio	ands	social performand	ce of generation 3b Li-
ion cell	s manufactu	ring ind	ustry, thus pos	sitioning Eu	rope	at the forefront	of the global market.
GIGAG	REEN propos	es a stru	uctured researd	ch plan to	devel	op and scale up (TRL 3-4 to 5-6) novel
electrode and cell component manufacturing processes that follow a Design to Manufacture (DtM)							
approach. This is, seeking for the minimum environmental impact and energy consumption, cell							
designs which facilitate the re-use and disassembly, increasement of the cost-efficiency and safety							
of processes and products, and high-throughput technologies able to be easily scaled up and							
automated in the context of industry 4.0/5.0 giga-factories. Supported by a vibrant and experienced							
consortium of academic and industrial partners, GIGAGREEN will follow two alternative R&I							
trajectories. The first one, based on N-Methyl-2-pyrrolidone (NMP)-free wet processing, is designed							
for a quick scale up and market uptake of optimised wet coating systems in current industrial setups							
(final TRL6, 30 cells of 10 Ah prototyped as demonstration). The second one, based on dry							
processing, will explore breakthrough technologies, achieving a smaller TRL by the end of the							
project	project (final TRL5, 30-40 mAh monolayer pouch cells prototypes as proof of concept), paving the						
path fo	path for upcoming R&I experiences to continue scaling up the most promising dry processing						
techniq	techniques.						
<u>.</u>		• • • • •	a information a				

Objectives: New project - no information available.

P39	Green and Sustainable Processes for Electrode	greenSPEED	web	
	Production			
Call: Cro	Call: Cross-sectoral solutions for the climate transition (HORIZON-CL5-2021-D2-01) (<u>link)</u>			
Contact	person: VIRTUAL VEHICLE RESEARCH GMBH (link)			
		: 31/12/25		
-	Description: Lithium-ion technology is the means to	•	•	
	er mobile applications, but the process of cell manu	•	e, e	
-	nvironmentally harmful substances. The greenSP			
sustaina	ble electrode and cell manufacturing processes with	th reduced energy	consumption, lower	
carbon	footprint and ZERO Volatile Organic Compounds (VC	DCs) emissions. To t	hat aim, the project	
main ta	rget is developing a battery cell comprised of elect	rodes manufacture	ed by innovative dry	
process	es. Our composite cathode, based on Ni-rich NMC,	is to be manufactu	red by scalable roll-	
to-roll d	ry electrode coating process, that fully removes the	use of casting-solv	ents and eliminates	
the need of energy-intense drying-, condensate and transportation process required in state-of-				
the-art electrode fabrication. The greenSPEED high-capacity pure-silicon anode is to be				
manufa	manufactured taking full advantage of our innovative process based on Microwave-Assisted Plasma			
Enhance	Enhanced Chemical Vapor Deposition (MW-PECVD), which deposits porous silicon directly on the			
copper current-collector starting from locally produced silane gas (SiH4). Moreover, the use of				
advanced modelling and simulation techniques including digital twins, artificial intelligence, and				
machine learning are to be employed to predict and optimise cell performance in early				
development stages, support the cell production process by virtually assessing the influence and				
importance of production parameters and thus minimising the number of experiments and to				
accelerate electrode production optimisation steps. The greenSPEED cell aims at increasing energy				
density (+69%) while reducing energy consumption (-32%) and costs (-21%) of production as				
compared to state-of-the-art Li-ion cells. The concepts here proposed have been already				
demonstrated at TRL 2/3 with the aim of reaching TRL 5/6 by the end of the project.				
Objectiv	Objectives: New project - no information available.			

P40	Eliminating VOC from Battery manufacturing	NoVOC	web		
	through dry or wet processing				
Call: Cr	Call: Cross-sectoral solutions for the climate transition (HORIZON-CL5-2021-D2-01) (<u>link)</u>				
Contac	t person: RISE RESEARCH INSTITUTES OF SWEDEN A	B <u>(link)</u>			
		: 31/8/26			
-	Description: Improvements in battery technolog				
	vehicle (EV) industry in Europe. The EU-funded		-		
compe	titive cell-manufacturing technologies for autor	notive batteries:	dry and wet cell.		
Researd	chers will manufacture automotive cells in two forma	ts – pouch and cylir	ndrical – at a fraction		
of the	current costs of cell manufacturing. Importantly,	the cells will conta	ain no toxic organic		
solvent	S.				
Objecti	ves: The project NoVOC addresses the topic Er	vironmentally sus	tainable processing		
techniq	ues applied to large scale electrode and cell compo	nent manufacturing	g for Li ion batteries.		
The activities of NoVOC are tailored to the challenges addressed by the call topic: 1. Lower carbon					
footprint cell manufacturing in Europe. 2. New sustainable electrode and cell manufacturing					
techniques with low energy consumption, and no Volatile Organic Compounds (VOCs) emissions. 3.					
Electro	Electrode coating production techniques eliminate organic solvents reduce the capital costs				
associated to the solvent recovery system. 4. Dry manufacturing techniques with next generation					
materials. 5. Industrializing closed loops and process design to return low-value chemicals from					
manufacturing processes to high-value products. In NoVOC we aim to design and demonstrate two					
competitive cell manufacturing technologies aqueous and dry cell manufacturing technologies for					
automotive batteries intended for production in Europe. The innovations proposed in NoVOC					
centre on improvements of cell manufacturing process by integrating two novel electrode					
manufacturing processes into the currently available cell assembly process and demonstrate					
manufa	manufacturability of automotive cells in two formats (pouch and cylindrical) with no toxic organic				
solvent	solvent at the fraction of the cell manufacturing cost that is currently available today. Next				
genera	generation cell manufacturing processes developed in Europe for electric vehicles batteries.				

P41	Sodium-Ion and sodium Metal BAtteries for	SIMBA	web	
	efficient and sustainable next-generation energy			
	storage			
Call: Bu	ilding a Low-Carbon, Climate Resilient Future: Nex	t-Generation Batte	ries (H2020-LC-BAT-	
2019-20	020) (<u>link)</u>			
	t person: TECHNISCHE UNIVERSITAT DARMSTADT D		zyk-Zajac	
		2:30/6/24		
-	Description: The transition to green energy requir			
	mbine improved performance, recyclability and sust	•	•	
	afe, energy-dense, low-cost and highly efficient. E			
	e most promising solution, and sodium ions could			
	ge, the EU-funded SIMBA project aims at developi	•	-	
battery	with sodium as the mobile ionic charge carrier for	stationary energy s	torage applications.	
Breakin	g new ground in sustainable energy storage, SIMBA	could help solve a n	najor problem of the	
	revolution.			
Objectives : The project main goal is the development of a highly cost-effective, safe, all-solid-state-				
battery with sodium as mobile ionic charge carrier for stationary energy storage applications. To				
achieve this goal, several aspects need to be considered including material innovations, sustainable				
electrode and cell manufacturing, improved characterisation and understanding of the				
electrochemical processes. SIMBA has the ambitious and realistic goal to tackle these challenges				
and has	formulated the following objectives: (1) Safer batte	eries with a novel So	olid-State Electrolyte	
(SSE) (TRL3-5), by developing a new class of single-ion conducting polymers (SIPEs) and its				
production method. (2) Higher energy density and more durable anodes by developing materials				
up to TRL5 using sustainable manufacturing methods. (3) Low-cost and higher energy cathode				
materials, by developing ultra-low-cost Prussian White (PW) and high energy density layered oxides				
(P2/O3) up to TRL5. (4) Obtaining deep understanding of fundamental mechanisms incl.				
degradation phenomena, taking place at the Solid-Electrolyte-Interface (SEI) and within the battery				
components. (5) Demonstration of a scaled-up highly efficient 12V, 1Ah battery module incl. BMS				
to valio	to validate the re-use of materials, recyclability, performance, LCA, and potential for further			
develop	development. Jointly this will result in a sodium-based battery demonstrating the improved			
perform	performance, recyclability and sustainability, for a stationary energy storage use-case, including a			
detailed Total Cost of Ownership analysis.				

P42	CURRENT DIRECT – Swappable (Waterborne Transport Battery	Container	CURRENT DIRECT	web
Call: Building a Low-Carbon, Climate Resilient Future: Next-Generation Batteries (H2020-LC-BAT-				
2019-2020) (<u>link)</u>				
Contact person: link				
Start D	Start Date: 1/1/21 End date: 31/12/23			
Project Description: A shift towards clean energy is a difficult but necessary task for the transport				sk for the transport

Project Description: A shift towards clean energy is a difficult but necessary task for the transport sector, which is responsible for a quarter of Europe's greenhouse gas emissions. This creates a specific challenge for the waterborne transport field, where, according to prognosis, emissions will increase rapidly, thus hindering the goals of the Paris Agreement. The use of batteries can reverse this trend, but current technology makes them much too expensive. To solve the problem, **the EU-funded Current Direct project proposes to develop and demonstrate an innovative lithium-ion cell engineered for waterborne transport.** It is based on novel manufacturing techniques that will enable significant cost reduction and fast adoption of methods supporting reduced greenhouse gas emissions.

Objectives: The transport sector contributes to almost a quarter of Europe's greenhouse gas (GHG) emissions. Compared to other sectors, such as agriculture or energy industries, it is the only sector with emissions higher than that of 1990. Waterborne transport emissions represent around 13% of the overall EU greenhouse gas emissions from the transport sector. Moreover, waterborne transport emissions could increase between 50% and 250% by 2050 under a business-as-usual scenario, undermining the objectives of the Paris agreement. The challenge for a large-scale adoption and implementation of batteries for waterborne transport is mainly related to the high costs of the battery systems and cells.

The Current Direct project addresses these challenges by proposing an innovative lithium-ion cell optimized for waterborne transport, using novel manufacturing techniques allowing for a consistent cost reduction compared to the current market prices. Additionally, a swappable containerized energy storage system optimized for cost and operation in the waterborne transport industry will be developed.

The overarching aim of the Current Direct project is to develop and demonstrate an innovative interchangeable waterborne transport battery system and EaaS Platform in an operational environment at the Port of Rotterdam at TRL7 that facilitates fast charging of vessels, fleet optimization and novel business models. The Current Direct project is dedicated to (i) significantly reduce the total cost of waterborne transport batteries, (ii) cut GHG emissions of the marine transport sector through electrification of vessel fleets, (iii) increase the energy density of waterborne battery cells and (iv) trigger investments for innovation, job and knowledge creation in the European marine transport and battery sector.

P43	Solutions for largE bAtteries for waterBorne	SEABAT	<u>web</u>
	trAnsporT		

Call: Building a Low-Carbon, Climate Resilient Future: Next-Generation Batteries (H2020-LC-BAT-2019-2020)

(<u>link)</u>

Contact person: Dr.ir Jeroen Stuyts, Email: Jeroen.Stuyts@flandersmake.be

Start Date:1/1/21

Project Description: The waterborne transport sector is very active, playing a central role in the globalised market. It is also an energy intensive sector that is looking for ways to reduce its carbon footprint. The EU-funded SEABAT project will provide an alternative to previous energy storage solutions for waterborne transport by developing a full-electric maritime hybrid battery concept. This concept combines two different battery types in a standardised and modular package that may allow it to be produced in larger quantities and profit from economies of scale.

End date:31/12/24

Objectives: The overall objective of SEABAT is to develop a full-electric maritime hybrid concept based on (1) combining modular high-energy batteries and high-power batteries, (2) novel converter concepts and (3) production technology solutions derived from the automotive sector. A modular approach will reduce component costs (battery, convertor) so that unique ship designs can profit from economies of scale by using standardised low-cost modular components. The concept is suitable for future battery generations and high-power components that may have higher power densities or are based on different chemistries. Expected results: optimal full-electric hybrid modular solution, minimising the battery footprint and reducing the oversizing (from up to 10 times down to max. 2 times). Validating as a 300 kWh system (full battery system test) at TRL 5, and virtually validating the solution for batteries of 1 MWh and above, using 300 kWh system P-HiL tests.

The result will be a validated hybrid battery solution for capacities of 1 MWh and beyond, a roadmap for type approval and a strategy towards standardisation for (among others) ferries and short sea shipping. The solution will deliver a 35-50% lower total cost of ownership (TCO) of maritime battery systems, including 15-30% lower CAPEX investment, 50% lower costs of integration at the shipyard and a 5% investment cost recuperation after the useful life in the vessel. The SEABAT consortium unites all the necessary expertise for developing the hybrid topology and implementing it in the industry. The market pick-up of the SEABAT solution is maximised by having 20 shipbuilders and integrators in the consortium; they are represented by the SOERMAR association. The stakeholder group, in which end users and port authorities are represented, supports the wide adoption of the SEABAT solution in the European maritime market, and the increase in European skills base in large battery technology and manufacturing processes.

